login
A091056
Expansion of x^2/((1-x)*(1+2*x)*(1-6*x)).
4
0, 0, 1, 5, 33, 193, 1169, 6993, 42001, 251921, 1511697, 9069841, 54419729, 326517009, 1959104785, 11754623249, 70527750417, 423166480657, 2538998927633, 15233993478417, 91403961045265, 548423765922065
OFFSET
0,4
COMMENTS
4*A091055(n) counts walks of length n between non-adjacent vertices of the Johnson graph J(5,2).
6^n = A091054(n) + 6*A091055(n) + 12*a(n).
LINKS
Eric Weisstein's World of Mathematics, Johnson Graph
FORMULA
a(n) = (3 * 6^n + 5*(-2)^n - 8)/120.
a(0)=0, a(1)=0, a(2)=1, a(n) = 5*a(n-1) + 8*a(n-2) - 12*a(n-3). - Harvey P. Dale, Apr 02 2015
E.g.f.: (3*exp(6*x) + 5*exp(-2*x) - 8*exp(x))/120. - G. C. Greubel, Dec 27 2019
MAPLE
seq( (3*6^n +5*(-2)^n -8)/120, n=0..40); # G. C. Greubel, Dec 27 2019
MATHEMATICA
CoefficientList[Series[x^2/((1-x)(1+2x)(1-6x)), {x, 0, 40}], x] (* or *) LinearRecurrence[{5, 8, -12}, {0, 0, 1}, 40] (* Harvey P. Dale, Apr 02 2015 *)
PROG
(PARI) vector(41, n, (3*6^(n-1) + 5*(-2)^(n-1) - 8)/120) \\ G. C. Greubel, Dec 27 2019
(Magma) [(3*6^n +5*(-2)^n -8)/120: n in [0..40]]; // G. C. Greubel, Dec 27 2019
(Sage) [(3*6^n +5*(-2)^n -8)/120 for n in (0..40)] # G. C. Greubel, Dec 27 2019
(GAP) List([0..40], n-> (3*6^n +5*(-2)^n -8)/120); # G. C. Greubel, Dec 27 2019
CROSSREFS
Sequence in context: A308679 A272833 A050915 * A244901 A197675 A015544
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Dec 17 2003
STATUS
approved