login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052992 Expansion of 1/((1 - x)*(1 - 2*x)*(1 + 2*x)). 6
1, 1, 5, 5, 21, 21, 85, 85, 341, 341, 1365, 1365, 5461, 5461, 21845, 21845, 87381, 87381, 349525, 349525, 1398101, 1398101, 5592405, 5592405, 22369621, 22369621, 89478485, 89478485, 357913941, 357913941, 1431655765, 1431655765, 5726623061, 5726623061 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) is the sum of square divisors of 2^n. - Paul Barry, Oct 13 2005

Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 131", based on the 5-celled von Neumann neighborhood.  See A279053 for references and links. - Robert Price, Dec 05 2016

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1068

Index entries for linear recurrences with constant coefficients, signature (1,4,-4).

FORMULA

G.f.: 1/(-1+4*x^2)/(-1+x).

Recurrence: {a(1)=1, a(0)=1, -4*a(n) - 1 + a(n+2) = 0}.

a(n) = -1/3 + Sum((1/6)*(1+4*_alpha)*_alpha^(-1-n), where _alpha=RootOf(-1+4*_Z^2))

a(n) = Sum_{k=0..n} 2^k(1+(-1)^k)/2. - Paul Barry, Nov 24 2003

a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3). - Paul Curtz, Apr 27 2011

a(n) = (4^(1 + floor((n-1)/2) - 1)/3. - Federico Provvedi, Oct 19 2018

a(n)-a(n-1) = A199572(n). - R. J. Mathar, Feb 27 2019

MAPLE

spec := [S, {S=Prod(Sequence(Prod(Union(Z, Z), Union(Z, Z))), Sequence(Z))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);

MATHEMATICA

CoefficientList[Series[1/((1-x)(1-2x)(1+2x)), {x, 0, 40}], x] (* or *) LinearRecurrence[{1, 4, -4}, {1, 1, 5}, 40] (* or *) With[{c= LinearRecurrence[ {5, -4}, {1, 5}, 20]}, Riffle[c, c]] (* Harvey P. Dale, Sep 12 2015 *)

(4^(1 + Floor[(Range@40-1)/2])-1)/3 (* Federico Provvedi, Oct 19 2018 *)

PROG

(Python) for n in range(0, 40): print(int(4**(1+int((n+2)/2)-1)/3), end=', ') # Stefano Spezia, Oct 19 2018

(GAP) Flat(List([1..17], n->[(4^n-1)/3, (4^n-1)/3])); # Muniru A Asiru, Oct 21 2018

(MAGMA) [&+[2^k*(1 + (-1)^k)/2: k in [0..n]]: n in [0..50]]; // Vincenzo Librandi, Oct 21 2018

CROSSREFS

Cf. A279053.

Sequence in context: A116400 A279810 A279750 * A280147 A279666 A283046

Adjacent sequences:  A052989 A052990 A052991 * A052993 A052994 A052995

KEYWORD

nonn,easy

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

EXTENSIONS

More terms from James A. Sellers, Jun 08 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 17:50 EDT 2020. Contains 334828 sequences. (Running on oeis4.)