login
A057860
Number of residue classes modulo n which contain only composite numbers.
2
0, 0, 0, 1, 0, 2, 0, 3, 2, 4, 0, 6, 0, 6, 5, 7, 0, 10, 0, 10, 7, 10, 0, 14, 4, 12, 8, 14, 0, 19, 0, 15, 11, 16, 9, 22, 0, 18, 13, 22, 0, 27, 0, 22, 19, 22, 0, 30, 6, 28, 17, 26, 0, 34, 13, 30, 19, 28, 0, 41, 0, 30, 25, 31, 15, 43, 0, 34, 23
OFFSET
1,6
LINKS
FORMULA
a(n) = n - A057859(n) = A051953(n) - A001221(n).
EXAMPLE
a(30) = 19 since 30k+m is always composite if m = 0, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27 or 28
MATHEMATICA
Table[n - EulerPhi[n] - PrimeNu[n], {n, 1, 100}] (* G. C. Greubel, May 13 2017 *)
PROG
(PARI) for(n=1, 100, print1(n - eulerphi(n) - omega(n), ", ")) \\ G. C. Greubel, May 13 2017
CROSSREFS
Cf. A057858.
Sequence in context: A353335 A232343 A140944 * A092915 A063749 A231333
KEYWORD
nonn,look
AUTHOR
Henry Bottomley, Sep 08 2000
STATUS
approved