login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109765 Expansion of x/((4*x-1)*(2*x-1)*(x+1)). 1
0, 1, 5, 23, 97, 399, 1617, 6511, 26129, 104687, 419089, 1677039, 6709521, 26840815, 107368721, 429485807, 1717965073, 6871903983, 27487703313, 109950988015, 439804301585, 1759217905391, 7036873019665, 28147494874863 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

In reference to the program code given, 1baseksumseq[C*D] = A001045 (Jacobsthal sequence, disregard signs).

LINKS

Table of n, a(n) for n=0..23.

Index entries for linear recurrences with constant coefficients, signature (5, -2, -8).

FORMULA

a(n) = 5*a(n-1) - 2*a(n-2) - 8*a(n-3), n >= 3; a(n) = (1/15)*(6*4^n-5*2^n-(-1)^n); a(n+1) + a(n) = A006516(n+1); a(n+2) - a(n) = A010036(n+1)

MATHEMATICA

CoefficientList[Series[x/((4x-1)(2x-1)(x+1)), {x, 0, 30}], x] (* or *)

LinearRecurrence[{5, -2, -8}, {0, 1, 5}, 30] (* Harvey P. Dale, Jan 02 2013 *)

PROG

Floretion Algebra Multiplication Program, FAMP Code: 1basejsumseq[C*D] with C = - 'j + 'k - j' + k' - 'ii' - 'ij' - 'ik' - 'ji' - 'ki' and D = + .5'i + .5'k - .5j' - .5k' + .5'ii' + .5'jj' + .5'jk' + .5'ki'; sumtype: sum[Y[15]] = sum[Y[ * ]], disregard signs

CROSSREFS

Cf. A001045, A006516, A010036, A006095.

Sequence in context: A254824 A140529 A055489 * A119012 A215038 A084615

Adjacent sequences:  A109762 A109763 A109764 * A109766 A109767 A109768

KEYWORD

easy,nonn

AUTHOR

Creighton Dement, Aug 13 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 29 21:48 EDT 2017. Contains 284288 sequences.