login
A139275
a(n) = n*(8*n+1).
18
0, 9, 34, 75, 132, 205, 294, 399, 520, 657, 810, 979, 1164, 1365, 1582, 1815, 2064, 2329, 2610, 2907, 3220, 3549, 3894, 4255, 4632, 5025, 5434, 5859, 6300, 6757, 7230, 7719, 8224, 8745, 9282, 9835, 10404, 10989, 11590, 12207, 12840
OFFSET
0,2
COMMENTS
Sequence found by reading the line from 0, in the direction 0, 9,..., in the square spiral whose vertices are the triangular numbers A000217.
FORMULA
a(n) = 8*n^2 + n.
Sequences of the form a(n) = 8*n^2+c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 7 with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
a(n) = A000217(5*n) - A000217(3*n). - Bruno Berselli, Sep 21 2016
Sum_{n>=1} 1/a(n) = 8 - (1+sqrt(2))*Pi/2 - 4*log(2) - sqrt(2) * log(1+sqrt(2)) = 0.1887230016056779928... . - Vaclav Kotesovec, Sep 21 2016
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: x*(7*x + 9)/(1-x)^3.
E.g.f.: (8*x^2 + 9*x)*exp(x). (End)
MATHEMATICA
Table[n (8 n + 1), {n, 0, 40}] (* Bruno Berselli, Sep 21 2016 *)
LinearRecurrence[{3, -3, 1}, {0, 9, 34}, 50] (* Harvey P. Dale, Apr 21 2020 *)
PROG
(PARI) a(n) = n*(8*n+1); \\ Altug Alkan, Sep 21 2016
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Apr 26 2008
STATUS
approved