This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014635 a(n) = 2*n*(4*n - 1). 20
 0, 6, 28, 66, 120, 190, 276, 378, 496, 630, 780, 946, 1128, 1326, 1540, 1770, 2016, 2278, 2556, 2850, 3160, 3486, 3828, 4186, 4560, 4950, 5356, 5778, 6216, 6670, 7140, 7626, 8128, 8646, 9180, 9730, 10296, 10878, 11476, 12090, 12720, 13366, 14028, 14706 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Even hexagonal numbers. Number of edges in the join of two complete graphs of order 3n and n, K_3n * K_n - Roberto E. Martinez II, Jan 07 2002 Bisection of A000384. Also, this sequence arises from reading the line from 0, in the direction 0, 6, ..., in the square spiral whose vertices are the triangular numbers A000217. Perfect numbers are members of this sequence because a(A134708(n)) = A000396(n). Also, positive members are a bisection of A139596. - Omar E. Pol, May 07 2008 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..880 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = C(4*n,2), n>=0. - Zerinvary Lajos, Jan 02 2007 O.g.f.: 2x(3+5x)/(1-x)^3. - R. J. Mathar, May 06 2008 a(n) = 8n^2 - 2n. - Omar E. Pol, May 07 2008 a(n) = a(n-1) + 16*n - 10 (with a(0)=0). - Vincenzo Librandi, Nov 20 2010 E.g.f.: (8*x^2 + 6*x)*exp(x). - G. C. Greubel, Jul 18 2017 From Vaclav Kotesovec, Aug 18 2018: (Start) Sum_{n>=1} 1/a(n) = 3*log(2)/2 - Pi/4. Sum_{n>=1} (-1)^n / a(n) = log(2)/2 + log(1+sqrt(2))/sqrt(2) - Pi / 2^(3/2). (End) MAPLE [seq(binomial(4*n, 2), n=0..43)]; # Zerinvary Lajos, Jan 02 2007 MATHEMATICA s=0; lst={s}; Do[s+=n++ +6; AppendTo[lst, s], {n, 0, 7!, 16}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 16 2008 *) Table[2*n*(4*n - 1), {n, 0, 50}] (* G. C. Greubel, Jul 18 2017 *) PROG (MAGMA) [2*n*(4*n-1): n in [0..50]]; // Vincenzo Librandi, Apr 25 2011 (PARI) a(n)=2*n*(4*n-1) \\ Charles R Greathouse IV, Jun 17 2017 CROSSREFS Cf. A000217, A000384, A000396, A134708, A139596. Sequence in context: A081537 A058007 A033588 * A227970 A034955 A117978 Adjacent sequences:  A014632 A014633 A014634 * A014636 A014637 A014638 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Erich Friedman STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 09:33 EST 2019. Contains 329843 sequences. (Running on oeis4.)