login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014635 a(n) = 2n(4n - 1). 20
0, 6, 28, 66, 120, 190, 276, 378, 496, 630, 780, 946, 1128, 1326, 1540, 1770, 2016, 2278, 2556, 2850, 3160, 3486, 3828, 4186, 4560, 4950, 5356, 5778, 6216, 6670, 7140, 7626, 8128, 8646, 9180, 9730, 10296, 10878, 11476, 12090, 12720, 13366, 14028, 14706 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Even hexagonal numbers.

Number of edges in the join of two complete graphs of order 3n and n, K_3n * K_n - Roberto E. Martinez II, Jan 07 2002

Bisection of A000384. Also, this sequence arises from reading the line from 0, in the direction 0, 6, ..., in the square spiral whose vertices are the triangular numbers A000217. Perfect numbers are members of this sequence because a(A134708(n)) = A000396(n). Also, positive members are a bisection of A139596. - Omar E. Pol, May 07 2008

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..880

Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.

FORMULA

a(n) = C(4*n,2), n>=0. - Zerinvary Lajos, Jan 02 2007

O.g.f.: 2x(3+5x)/(1-x)^3. - R. J. Mathar, May 06 2008

a(n) = 8n^2 - 2n. - Omar E. Pol, May 07 2008

a(n) = a(n-1) + 16*n - 10 (with a(0)=0). - Vincenzo Librandi, Nov 20 2010

MAPLE

[seq(binomial(4*n, 2), n=0..43)]; # Zerinvary Lajos, Jan 02 2007

MATHEMATICA

s=0; lst={s}; Do[s+=n++ +6; AppendTo[lst, s], {n, 0, 7!, 16}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 16 2008 *)

PROG

(MAGMA) [2*n*(4*n-1): n in [0..50]]; // Vincenzo Librandi, Apr 25 2011

CROSSREFS

Cf. A000217, A000384, A000396, A134708, A139596.

Sequence in context: A254879 A058007 A033588 * A227970 A034955 A117978

Adjacent sequences:  A014632 A014633 A014634 * A014636 A014637 A014638

KEYWORD

nonn,easy

AUTHOR

Mohammad K. Azarian

EXTENSIONS

More terms from Erich Friedman

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 24 00:18 EDT 2017. Contains 283983 sequences.