OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = 8*n^2 - 5*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3a(n-1) - 3a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 13 with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Jul 18 2017: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(13*x + 3)/(1-x)^3.
E.g.f.: (8*x^2 + 3*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = ((sqrt(2)-1)*Pi + 8*log(2) - 2*sqrt(2)*log(sqrt(2)+1))/10. - Amiram Eldar, Mar 17 2022
MATHEMATICA
s=0; lst={s}; Do[s+=n++ +3; AppendTo[lst, s], {n, 0, 7!, 16}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 16 2008 *)
Table[n*(8*n -5), {n, 0, 50}] (* G. C. Greubel, Jul 18 2017 *)
LinearRecurrence[{3, -3, 1}, {0, 3, 22}, 50] (* Harvey P. Dale, Jan 13 2024 *)
PROG
(PARI) a(n)=n*(8*n-5) \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Apr 26 2008
STATUS
approved