login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139272
a(n) = n*(8*n-5).
12
0, 3, 22, 57, 108, 175, 258, 357, 472, 603, 750, 913, 1092, 1287, 1498, 1725, 1968, 2227, 2502, 2793, 3100, 3423, 3762, 4117, 4488, 4875, 5278, 5697, 6132, 6583, 7050, 7533, 8032, 8547, 9078, 9625, 10188, 10767, 11362, 11973, 12600
OFFSET
0,2
COMMENTS
Sequence found by reading the line from 0, in the direction 0, 3, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139276 in the same spiral.
FORMULA
a(n) = 8*n^2 - 5*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3a(n-1) - 3a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 13 with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Jul 18 2017: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(13*x + 3)/(1-x)^3.
E.g.f.: (8*x^2 + 3*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = ((sqrt(2)-1)*Pi + 8*log(2) - 2*sqrt(2)*log(sqrt(2)+1))/10. - Amiram Eldar, Mar 17 2022
MATHEMATICA
s=0; lst={s}; Do[s+=n++ +3; AppendTo[lst, s], {n, 0, 7!, 16}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 16 2008 *)
Table[n*(8*n -5), {n, 0, 50}] (* G. C. Greubel, Jul 18 2017 *)
LinearRecurrence[{3, -3, 1}, {0, 3, 22}, 50] (* Harvey P. Dale, Jan 13 2024 *)
PROG
(PARI) a(n)=n*(8*n-5) \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. numbers of the form n*(n*k-k+6)/2, this sequence is the case k=16: see Comments lines of A226492.
Sequence in context: A225414 A187694 A104604 * A159345 A006532 A274870
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Apr 26 2008
STATUS
approved