

A123580


The KruskalMacaulay function M_4(n).


4



0, 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 9, 10, 10, 10, 11, 12, 13, 13, 14, 15, 15, 16, 16, 16, 17, 18, 18, 19, 19, 19, 20, 20, 20, 20, 21, 22, 23, 23, 24, 25, 25, 26, 26, 26, 27, 28, 28, 29, 29, 29, 30, 30, 30, 30, 31, 32, 32, 33, 33, 33, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 37, 38
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Write n (uniquely) as n = C(n_t,t) + C(n_{t1},t1) + ... + C(n_v,v) where n_t > n_{t1} > ... > n_v >= v >= 1. Then M_t(n) = C(n_t1,t1) + C(n_{t1}1,t2) + ... + C(n_v1,v1).


REFERENCES

D. E. Knuth, The Art of Computer Programming, Vol. 4, Fascicle 3, Section 7.2.1.3, Table 3.


LINKS

Table of n, a(n) for n=0..73.


MAPLE

lowpol := proc(n, t) local x::integer; x := floor( (n*factorial(t))^(1/t)); while binomial(x, t) <= n do x := x+1; od; RETURN(x1); end: C := proc(n, t) local nresid, tresid, m, a; nresid := n; tresid := t; a := []; while nresid > 0 do m := lowpol(nresid, tresid); a := [op(a), m]; nresid := nresid  binomial(m, tresid); tresid := tresid1; od; RETURN(a); end: M := proc(n, t) local a; a := C(n, t); add( binomial(op(i, a)1, ti), i=1..nops(a)); end: A123580 := proc(n) M(n, 4); end: for n from 0 to 120 do printf("%d, ", A123580(n)); od;  R. J. Mathar, Mar 14 2007


CROSSREFS

For M_i(n), i=1, 2, 3, 4, 5 see A000127, A123578, A123579, A123580, A123731.
Sequence in context: A116549 A107079 A025528 * A072894 A037915 A195180
Adjacent sequences: A123577 A123578 A123579 * A123581 A123582 A123583


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane, Nov 12 2006


EXTENSIONS

More terms from R. J. Mathar, Mar 14 2007


STATUS

approved



