login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123583 Triangle read by rows: T(n, k) is the coefficient of x^k in the polynomial 1 - T_n(x)^2, where T_n(x) is the n-th Chebyshev polynomial of the first kind. 8
0, 1, 0, -1, 0, 0, 4, 0, -4, 1, 0, -9, 0, 24, 0, -16, 0, 0, 16, 0, -80, 0, 128, 0, -64, 1, 0, -25, 0, 200, 0, -560, 0, 640, 0, -256, 0, 0, 36, 0, -420, 0, 1792, 0, -3456, 0, 3072, 0, -1024, 1, 0, -49, 0, 784, 0, -4704, 0, 13440, 0, -19712, 0, 14336, 0, -4096, 0, 0, 64, 0, -1344, 0, 10752, 0, -42240, 0, 90112, 0, -106496, 0, 65536, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

All row sum are zero. Row sums of absolute values are in A114619. - Klaus Brockhaus, May 29 2009

REFERENCES

Gareth Jones and David Singerman, Belyi Functions, Hypermaps and Galois Groups, Bull. London Math. Soc., 28 (1996), 561-590.

G. B. Shabat and I. A. Voevodskii, Drawing curves over number fields, The Grothendieck Festschift, vol. 3, Birkhaeuser, 1990, 199-227.

G. B. Shabat and A. Zvonkin, Plane trees and algebraic numbers, Contemporary Math., 1994, vol. 178, 233-275.

LINKS

Table of n, a(n) for n=0..79.

Yuri Matiyasevich, Generalized Chebyshev polynomials.

EXAMPLE

First few rows of the triangle are:

[ 0 ]

[ 1, 0, -1 ]

[ 0, 0, 4, 0, -4 ]

[ 1, 0, -9, 0, 24, 0, -16 ]

[ 0, 0, 16, 0, -80, 0, 128, 0, -64 ]

[ 1, 0, -25, 0, 200, 0, -560, 0, 640, 0, -256 ]

[ 0, 0, 36, 0, -420, 0, 1792, 0, -3456, 0, 3072, 0, -1024 ]

First few polynomials are:

0,

1 - x^2,

4 x^2 - 4 x^4,

1 - 9 x^2 + 24 x^4 - 16 x^6,

16 x^2 - 80 x^4 + 128 x^6 - 64 x^8,

1 - 25 x^2 + 200 x^4 - 560 x^6 + 640 x^8 - 256 x^10,

36 x^2 - 420 x^4 + 1792 x^6 - 3456 x^8 + 3072 x^10 - 1024 x^12.

MATHEMATICA

w = Table[CoefficientList[1 - ChebyshevT[n, x]^2, x], {n, 0, 10}]; Flatten[w]

PROG

(MAGMA) [0] cat &cat[ Coefficients(1-ChebyshevT(n)^2): n in [1..8] ];

(PARI) v=[]; for(n=0, 8, v=concat(v, vector(2*n+1, j, polcoeff(1-poltchebi(n)^2, j-1)))); v

CROSSREFS

Cf. A123588.

Sequence in context: A112919 A019201 A137660 * A236112 A226787 A140574

Adjacent sequences:  A123580 A123581 A123582 * A123584 A123585 A123586

KEYWORD

tabf,sign

AUTHOR

Gary W. Adamson and Roger L. Bagula, Nov 12 2006

EXTENSIONS

Edited by N. J. A. Sloane, Mar 09 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 05:27 EST 2016. Contains 278761 sequences.