The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A123580 The Kruskal-Macaulay function M_4(n). 4

%I

%S 0,1,2,3,4,4,5,6,7,7,8,9,9,10,10,10,11,12,13,13,14,15,15,16,16,16,17,

%T 18,18,19,19,19,20,20,20,20,21,22,23,23,24,25,25,26,26,26,27,28,28,29,

%U 29,29,30,30,30,30,31,32,32,33,33,33,34,34,34,34,35,35,35,35,35,36,37,38

%N The Kruskal-Macaulay function M_4(n).

%C Write n (uniquely) as n = C(n_t,t) + C(n_{t-1},t-1) + ... + C(n_v,v) where n_t > n_{t-1} > ... > n_v >= v >= 1. Then M_t(n) = C(n_t-1,t-1) + C(n_{t-1}-1,t-2) + ... + C(n_v-1,v-1).

%D D. E. Knuth, The Art of Computer Programming, Vol. 4, Fascicle 3, Section 7.2.1.3, Table 3.

%H B. M. Abrego, S. Fernandez-Merchant, B. Llano, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Abrego/abrego2.html">An Inequality for Macaulay Functions</a>, J. Int. Seq. 14 (2011) # 11.7.4

%p lowpol := proc(n,t) local x::integer; x := floor( (n*factorial(t))^(1/t)); while binomial(x,t) <= n do x := x+1; od; RETURN(x-1); end: C := proc(n,t) local nresid,tresid,m,a; nresid := n; tresid := t; a := []; while nresid > 0 do m := lowpol(nresid,tresid); a := [op(a),m]; nresid := nresid - binomial(m,tresid); tresid := tresid-1; od; RETURN(a); end: M := proc(n,t) local a; a := C(n,t); add( binomial(op(i,a)-1,t-i),i=1..nops(a)); end: A123580 := proc(n) M(n,4); end: for n from 0 to 120 do printf("%d, ",A123580(n)); od; # _R. J. Mathar_, Mar 14 2007

%Y For M_i(n), i=1, 2, 3, 4, 5 see A000127, A123578, A123579, A123580, A123731.

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_, Nov 12 2006

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 09:27 EDT 2022. Contains 356005 sequences. (Running on oeis4.)