This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A102728 Array read by antidiagonals: T(n, k) = ((n+1)^k-(n-1)^k)/2. 2
 0, 0, 1, 0, 1, 0, 0, 1, 2, 1, 0, 1, 4, 4, 0, 0, 1, 6, 13, 8, 1, 0, 1, 8, 28, 40, 16, 0, 0, 1, 10, 49, 120, 121, 32, 1, 0, 1, 12, 76, 272, 496, 364, 64, 0, 0, 1, 14, 109, 520, 1441, 2016, 1093, 128, 1, 0, 1, 16, 148, 888, 3376, 7448, 8128, 3280, 256, 0, 0, 1, 18, 193, 1400, 6841 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS Consider a 2 X 2 matrix M = [N, 1] / [1, N]. The n-th row of the array contains the values of the non diagonal elements of M^k, k=0,1,.... (Corresponding diagonal entry = non diagonal entry + (N-1)^k.) Table: N: row sequence G.f. cross references. 0: (1^n-(-1)^n)/2 x/((1+1x)(1-1x)) A000035 1: (2^n-0^n)/2 x/(1-2x) A000079 2: (3^n-1^n)/2 x/((1-1x)(1-3x)) A003462 3: (4^n-2^n)/2 x/((1-2x)(1-4x)) A006516 4: (7^n-3^n)/2 x/((1-3x)(1-5x)) A005059 5: (6^n-4^n)/2 x/((1-4x)(1-6x)) A016149 6: (7^n-5^n)/2 x/((1-5x)(1-7x)) A016161 A081200 7: (8^n-6^n)/2 x/((1-6x)(1-8x)) A016170 A081201 8: (9^n-7^n)/2 x/((1-7x)(1-9x)) A016178 A081202 9: (10^n-8^n)/2 x/((1-8x)(1-10x)) A016186 A081203 10: (11^n-9^n)/2 x/((1-9x)(1-11x)) A016190 11: (12^n-10^n)/2 x/((1-10x)(1-12x)) A016196 ... Characteristic polynomial x^2-2nx+(n^2-1) has roots n+-1, so if r(n) denotes a row sequence, r(n+1)/r(n) converges to n+1. Columns follow polynomials with certain binomial coefficients: column: polynomial 0: 0 1: 1 2: 2n 3: 3n^2+ 1 (see A056107) 4: 4n^3+ 4n (= 8*A006003(n)) 5: 5n^4+ 10n^2+ 1 6: 6n^5+ 20n^3+ 6n 7: 7n^6+ 35n^4+ 21n^2+ 1 8; 8n^7+ 56n^5+ 56n^3+ 8n 9: 9n^8+ 84n^6+126n^4+ 36n^2+ 1 10: 10n^9+ 120n^7+252n^5+120n^3+ 10n 11: 11n^10+165n^8+462n^6+330n^4+ 55n^2+ 1 LINKS EXAMPLE Array begins: 0,1,0,1,0,1... 0,1,2,4,8,16... 0,1,4,13,40,121... 0,1,6,28,120,496... 0,1,8,49,272,1441... ... PROG (PARI) MM(n, N)=local(M); M=matrix(n, n); for(i=1, n, for(j=1, n, if(i==j, M[i, j]=N, M[i, j]=1))); M for(k=0, 12, for(i=0, k, print1((MM(2, k-i)^i)[1, 2], ", "))) T(n, k) = ((n+1)^k-(n-1)^k)/2 for(k=0, 10, for(i=0, 10, print1(T(k, i), ", ")); print()) for(k=0, 10, for(i=0, 10, print1(((k+1)^i-(k-1)^i)/2, ", ")); print()) for(k=0, 10, for(i=0, 10, print1(polcoeff(x/((1-(k-1)*x)*(1-(k+1)*x)), i), ", ")); print()) CROSSREFS Sequence in context: A034373 A238889 A253628 * A262495 A165519 A266972 Adjacent sequences:  A102725 A102726 A102727 * A102729 A102730 A102731 KEYWORD nonn,tabl AUTHOR Lambert Klasen (lambert.klasen(AT)gmx.net) and Gary W. Adamson, Feb 07 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.