The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A081200 6th binomial transform of (0,1,0,1,0,1,...), A000035. 12
 0, 1, 12, 109, 888, 6841, 51012, 372709, 2687088, 19200241, 136354812, 964249309, 6798573288, 47834153641, 336059778612, 2358521965909, 16540171339488, 115933787267041, 812299450322412, 5689910849522509, 39848449432985688 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Binomial transform of A081199. Conjecture (verified up to a(9)): Number of collinear 5-tuples of points in a 5 X 5 X 5 X ... n-dimensional cubic grid. - Ron Hardin, May 24 2010 a(n) is also the total number of words of length n, over an alphabet of seven letters, of which one of them appears an odd number of times. See the Lekraj Beedassy, Jul 22 2003, comment on A006516 (4-letter case), and the Balakrishnan reference there. For the 2-, 3-, 5-, 6- and 8-letter case analogs see A131577, A003462, A005059, A081199, A081201 respectively. - Wolfdieter Lang, Jul 17 2017 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Takao Komatsu, Some recurrence relations of poly-Cauchy numbers, J. Nonlinear Sci. Appl., (2019) Vol. 12, Issue 12, 829-845. Index entries for linear recurrences with constant coefficients, signature (12,-35). FORMULA a(n) = 12*a(n-1) - 35*a(n-2), a(0) = 0, a(1) = 1. G.f.: x/((1-5*x)*(1-7*x)). a(n) = 7^n/2 - 5^n/2. a(n) = Sum_{k=0..n-1} 7^k * 5^(n-k-1), with a(0)=0. - Reinhard Zumkeller, Aug 01 2010 a(n) = A121213(n)/2. - Reinhard Zumkeller, Aug 01 2010 E.g.f.: exp(5*x)*(exp(2*x) - 1)/2. - Stefano Spezia, Jun 19 2021 EXAMPLE The a(2) = 12 words of length 2 over {A ,B, C, D, E, F, G} with say, A, appearing an odd number of times (that is once) are: AB, AC, AD, AE, AF, AG; BA, CA, DA, EA, FA, GA. - Wolfdieter Lang, Jul 17 2017 MATHEMATICA CoefficientList[Series[x / ((1 - 5 x) (1 - 7 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 07 2013 *) LinearRecurrence[{12, -35}, {0, 1}, 30] (* Harvey P. Dale, Feb 07 2014 *) PROG (Sage) [lucas_number1(n, 12, 35) for n in range(0, 21)] # Zerinvary Lajos, Apr 27 2009 (Magma) [7^n/2-5^n/2: n in [0..25]]; // Vincenzo Librandi, Aug 07 2013 CROSSREFS Cf. A000035, A003462, A005059, A006516, A016161, A081199, A081201 (binomial transform, and 8-letter analog), A121213, A131577. Sequence in context: A128877 A085797 A016161 * A351161 A016214 A037581 Adjacent sequences:  A081197 A081198 A081199 * A081201 A081202 A081203 KEYWORD nonn,easy AUTHOR Paul Barry, Mar 11 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 6 21:32 EDT 2022. Contains 357270 sequences. (Running on oeis4.)