This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A016170 Expansion of 1/((1-6x)(1-8x)). 5
 1, 14, 148, 1400, 12496, 107744, 908608, 7548800, 62070016, 506637824, 4113568768, 33271347200, 268347559936, 2159841173504, 17357093552128, 139326933401600, 1117436577120256, 8956419276406784, 71752914167922688 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Index entries for linear recurrences with constant coefficients, signature (14,-48) FORMULA a(n) = Sum_{k=1..n} 2^(n-1)*3^(n-k)*binomial(n,k). - Zerinvary Lajos, Sep 24 2006 a(n) = 4*8^n-3*6^n = A081201(n+1). Binomial transform of A081033. [R. J. Mathar, Sep 18 2008] a(n) = 8*a(n-1)+6^n. [Vincenzo Librandi, Feb 09 2011] a(0)=1, a(1)=14, a(n) = 14*a(n-1)-48*a(n-2) [Harvey P. Dale, Dec 08 2011] MAPLE A016170:=n->4*8^n-3*6^n: seq(A016170(n), n=0..30); # Wesley Ivan Hurt, May 03 2017 MATHEMATICA CoefficientList[Series[1/((1-6x)(1-8x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{14, -48}, {1, 14}, 30] (* Harvey P. Dale, Dec 08 2011 *) PROG (PARI) Vec(1/((1-6*x)*(1-8*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 24 2012 CROSSREFS Cf. A081033, A081201. Sequence in context: A002451 A207259 * A081201 A065899 A162965 A067103 Adjacent sequences:  A016167 A016168 A016169 * A016171 A016172 A016173 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.