login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238889
Number T(n,k) of self-inverse permutations p on [n] where the maximal displacement of an element equals k: k = max_{i=1..n} |p(i)-i|; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
11
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 2, 0, 1, 7, 7, 7, 4, 0, 1, 12, 16, 19, 18, 10, 0, 1, 20, 35, 47, 55, 48, 26, 0, 1, 33, 74, 117, 151, 170, 142, 76, 0, 1, 54, 153, 284, 399, 515, 544, 438, 232, 0, 1, 88, 312, 675, 1061, 1471, 1826, 1846, 1452, 764, 0, 1, 143, 629, 1575, 2792, 4119, 5651, 6664, 6494, 5008, 2620, 0
OFFSET
0,8
COMMENTS
Main diagonal and lower diagonal give: A000007, A000085(n-1).
Row sums give A000085.
LINKS
Joerg Arndt and Alois P. Heinz, Rows n=0..28, flattened
FORMULA
T(n,k) = A238888(n,k) - A238888(n,k-1) for k>0, T(n,0) = 1.
EXAMPLE
T(4,0) = 1: 1234.
T(4,1) = 4: 1243, 1324, 2134, 2143.
T(4,2) = 3: 1432, 3214, 3412.
T(4,3) = 2: 4231, 4321.
Triangle T(n,k) begins:
00: 1;
01: 1, 0;
02: 1, 1, 0;
03: 1, 2, 1, 0;
04: 1, 4, 3, 2, 0;
05: 1, 7, 7, 7, 4, 0;
06: 1, 12, 16, 19, 18, 10, 0;
07: 1, 20, 35, 47, 55, 48, 26, 0;
08: 1, 33, 74, 117, 151, 170, 142, 76, 0;
09: 1, 54, 153, 284, 399, 515, 544, 438, 232, 0;
10: 1, 88, 312, 675, 1061, 1471, 1826, 1846, 1452, 764, 0;
...
The 26 involutions of 5 elements together with their maximal displacements are:
01: [ 1 2 3 4 5 ] 0
02: [ 1 2 3 5 4 ] 1
03: [ 1 2 4 3 5 ] 1
04: [ 1 2 5 4 3 ] 2
05: [ 1 3 2 4 5 ] 1
06: [ 1 3 2 5 4 ] 1
07: [ 1 4 3 2 5 ] 2
08: [ 1 4 5 2 3 ] 2
09: [ 1 5 3 4 2 ] 3
10: [ 1 5 4 3 2 ] 3
11: [ 2 1 3 4 5 ] 1
12: [ 2 1 3 5 4 ] 1
13: [ 2 1 4 3 5 ] 1
14: [ 2 1 5 4 3 ] 2
15: [ 3 2 1 4 5 ] 2
16: [ 3 2 1 5 4 ] 2
17: [ 3 4 1 2 5 ] 2
18: [ 3 5 1 4 2 ] 3
19: [ 4 2 3 1 5 ] 3
20: [ 4 2 5 1 3 ] 3
21: [ 4 3 2 1 5 ] 3
22: [ 4 5 3 1 2 ] 3
23: [ 5 2 3 4 1 ] 4
24: [ 5 2 4 3 1 ] 4
25: [ 5 3 2 4 1 ] 4
26: [ 5 4 3 2 1 ] 4
There is one involution with no displacements, 7 with one displacement, etc. giving row 4: [1, 7, 7, 7, 4, 0].
MAPLE
b:= proc(n, k, s) option remember; `if`(n=0, 1, `if`(n in s,
b(n-1, k, s minus {n}), b(n-1, k, s) +add(`if`(i in s, 0,
b(n-1, k, s union {i})), i=max(1, n-k)..n-1)))
end:
A:= (n, k)-> `if`(k<0, 0, b(n, k, {})):
T:= (n, k)-> A(n, k) -A(n, k-1):
seq(seq(T(n, k), k=0..n), n=0..14);
MATHEMATICA
b[n_, k_, s_List] := b[n, k, s] = If[n == 0, 1, If[MemberQ[s, n], b[n-1, k, DeleteCases[s, n]], b[n-1, k, s] + Sum[If[MemberQ[s, i], 0, b[n-1, k, s ~Union~ {i}]], {i, Max[1, n-k], n-1}]]]; A[n_, k_] := If[k<0, 0, b[n, k, {}]]; T[n_, k_] := A[n, k] - A[n, k-1]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 08 2015, translated from Maple *)
CROSSREFS
Sequence in context: A369324 A004248 A034373 * A296207 A253628 A102728
KEYWORD
nonn,tabl
AUTHOR
Joerg Arndt and Alois P. Heinz, Mar 06 2014
STATUS
approved