OFFSET
1,2
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 for no n > 28.
(ii) If n > 7 is not equal to 34, then prime(k*n) + pi(k*n) is prime for some k = 1, ..., n.
The conjecture implies that there are infinitely many primes p with p - pi(pi(p)) (or p + pi(pi(p)) prime.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..3000
Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014.
EXAMPLE
a(5) = 1 since prime(3*5) - pi(3*5) = 47 - 6 = 41 is prime.
a(28) = 1 since prime(18*28) - pi(18*28) = prime(504) - pi(504) = 3607 - 96 = 3511 is prime.
MATHEMATICA
p[k_]:=PrimeQ[Prime[k]-PrimePi[k]]
a[n_]:=Sum[If[p[k*n], 1, 0], {k, 1, n}]
Table[a[n], {n, 1, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 06 2014
STATUS
approved