login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005059 a(n) = (5^n - 3^n)/2. 19
0, 1, 8, 49, 272, 1441, 7448, 37969, 192032, 966721, 4853288, 24325489, 121804592, 609554401, 3049366328, 15251614609, 76272421952, 381405156481, 1907154922568, 9536162033329, 47681972428112, 238413348924961, 1192077204978008, 5960417405949649 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Number of lines passing through 3 points of an n-dimensional grid of points of side 3. - David W. Wilson, c. 1999

a(n) is also the total number of words of length n, over an alphabet of five letters, one of them appearing an odd number of times. See the Lekraj Beedassy, Jul 22 2003, comment under A006516 (4-letter words), and the Balakrishnan reference there. See A003462 for the analogous 3-letter words problem. - Wolfdieter Lang, Jul 16 2017

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

M. A. Alekseyev and T. Berger, Solving the Tower of Hanoi with Random Moves. In: J. Beineke, J. Rosenhouse (eds.) The Mathematics of Various Entertaining Subjects: Research in Recreational Math, Princeton University Press, 2016, pp. 65-79. ISBN 978-0-691-16403-8

Index entries for linear recurrences with constant coefficients, signature (8,-15).

FORMULA

a(n) = 8*a(n-1) - 15*a(n-2). - Paul Barry, Mar 03 2003

G.f.: x/((1-3*x)*(1-5*x)). - Paul Barry, Mar 03 2003

a(n) = Sum_{k=1..n} 2^(k-1)*3^(n-k)*binomial(n,k). - Zerinvary Lajos, Sep 24 2006

a(n) = (r^n-s^n)/(r-s) with r=5 and s=3. - Sture Sjöstedt, Oct 17 2012

a(n) = Sum_{k=0..n-1} 3^k*5^(n-k-1) for n>0, a(0)=0. - Bruno Berselli, Aug 07 2013

EXAMPLE

For the fifth formula: a(4) = 1*125 + 3*25 + 9*5 + 27*1 = 272. [Bruno Berselli, Aug 07 2013]

MAPLE

A005059:=n->(5^n-3^n)/2: seq(A005059(n), n=0..30); # Wesley Ivan Hurt, Nov 18 2014

MATHEMATICA

Join[{a=0, b=1}, Table[c=8*b-15*a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 19 2011*)

LinearRecurrence[{8, -15}, {0, 1}, 50] (* Sture Sjöstedt, Oct 17 2012 *)

Table[(5^n - 3^n)/2, {n, 0, 23}] (* Michael De Vlieger, Jul 16 2017 *)

PROG

(Sage) [lucas_number1(n, 8, 15) for n in xrange(0, 21)] /* Zerinvary Lajos, Apr 23 2009 */

(MAGMA) [(5^n - 3^n)/2: n in [0..30] ]; // Vincenzo Librandi, Aug 19 2011

(PARI) a(n)=(5^n-3^n)/2 \\ Charles R Greathouse IV, Jun 11 2013

CROSSREFS

Cf. A081199 (binomial transform), A006516 (inverse binomial transform, and special 4-letter words). A003462 (special 3-letter words).

Sequence in context: A081901 A283686 A026389 * A026719 A026774 A089383

Adjacent sequences:  A005056 A005057 A005058 * A005060 A005061 A005062

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 12:34 EST 2017. Contains 295001 sequences.