login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A016149 Expansion of 1/((1-4*x)*(1-6*x)). 5
1, 10, 76, 520, 3376, 21280, 131776, 807040, 4907776, 29708800, 179301376, 1080002560, 6496792576, 39047864320, 234555621376, 1408407470080, 8454739787776, 50745618595840, 304542431051776 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Index entries for linear recurrences with constant coefficients, signature (10,-24).

FORMULA

a(n) = 10*a(n-1)-24*a(n-2) for n>1, a(0)=1. - Barry E. Williams, Jan 13 2000

a(n) = ((6^(n+1))-4^(n+1))/2. - Barry E. Williams, Jan 13 2000

a(n) = A081199(n+1). Binomial transform of A080961. - R. J. Mathar, Sep 18 2008

a(n) = sum( k=0..n, 6^k*4^(n-k) ). [Bruno Berselli, Aug 07 2013]

MAPLE

seq(add(2^(2*n-k)*binomial(n, k)/2, k=1..n), n=1..19); # Zerinvary Lajos, Apr 18 2009

MATHEMATICA

Join[{a=1, b=10}, Table[c=10*b-24*a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 27 2011 *)

LinearRecurrence[{10, -24}, {1, 10}, 30]  (* or *) CoefficientList[ Series[ 1/(1-10 x+24 x^2), {x, 0, 30}], x] (* Harvey P. Dale, Apr 24 2011 *)

PROG

(Sage) [lucas_number1(n, 10, 24) for n in xrange(1, 20)]# Zerinvary Lajos, Apr 26 2009]

(PARI) Vec(1/((1-4*x)*(1-6*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 24 2012

(MAGMA) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-4*x)*(1-6*x)))); // Vincenzo Librandi, Jun 24 2013

CROSSREFS

Sequence in context: A108277 A061319 A223994 * A081199 A198692 A215465

Adjacent sequences:  A016146 A016147 A016148 * A016150 A016151 A016152

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 26 05:21 EDT 2017. Contains 284111 sequences.