login
A079344
F(n) mod 8, where F(n) = A000045(n) is the n-th Fibonacci number.
10
0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 0, 5, 5
OFFSET
0,4
COMMENTS
This sequence does not contain the complete set of residues modulo 8. See A079002. - Michel Marcus, Jan 31 2020
LINKS
Brandon Avila and Yongyi Chen, On Moduli For Which the Lucas Numbers Contain a Complete Residue System, Fibonacci Quart. 51 (2013), no. 2, 151-152. See p. 151.
S. A. Burr, On moduli for which the Fibonacci sequence contains a complete system of residues, The Fibonacci Quarterly, 9.5 (1971), 497-504.
P. Ribenboim, FFF (Favorite Fibonacci Flowers), Fib. Q. 43 (No. 1, 2005), 3-14.
Eric Weisstein's World of Mathematics, Fibonacci Number
FORMULA
Sequence is periodic with Pisano period 12 = A001175(8).
G.f.: -x*(1+x^2+x^3+3*x^4+6*x^6-5*x^5+x^7) / ( (x-1)*(x^2-x+1)*(1+x+x^2)*(x^4-x^2+1) ). - R. J. Mathar, Aug 08 2012
EXAMPLE
a(8) = F(8) mod 8 = 21 mod 8 = 5.
MATHEMATICA
Mod[Fibonacci[Range[0, 110]], 8] (* or *) LinearRecurrence[ {1, 0, 0, -1, 1, 0, 0, -1, 1}, {0, 1, 1, 2, 3, 5, 0, 5, 5}, 110] (* Harvey P. Dale, Jan 16 2014 *)
PROG
(PARI) for (n=0, 100, print1(fibonacci(n)%8", "))
(Magma) [Fibonacci(n) mod 8: n in [0..100]]; // Vincenzo Librandi, Feb 04 2014
KEYWORD
nonn,easy,changed
AUTHOR
Jon Perry, Jan 04 2003
EXTENSIONS
Edited by N. J. A. Sloane, Dec 06 2008 at the suggestion of R. J. Mathar
STATUS
approved