

A111958


Lucas numbers (A000032) mod 8.


6



2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

This sequence has periodlength 12.


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..9999
Paulo Ribenboim, FFF (Favorite Fibonacci Flowers), Fib. Quart. 43 (No. 1, 2005), 314.
Index entries for linear recurrences with constant coefficients, signature (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).


FORMULA

From G. C. Greubel, Feb 08 2016: (Start)
a(n) = a(n1)  a(n2) + a(n3)  a(n4) + a(n5)  a(n6) + a(n7)  a(n8) + a(n9)  a(n10) + a(n11).
a(n+12) = a(n). (End)


MATHEMATICA

LinearRecurrence[{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3}, 105] (* Ray Chandler, Aug 27 2015 *)
Mod[LucasL[Range[0, 99]], 8] (* Alonso del Arte, Dec 19 2015 *)


CROSSREFS

Cf. A000032, A111958, A130893.
Sequence in context: A259773 A030133 A139374 * A192439 A160187 A257879
Adjacent sequences: A111955 A111956 A111957 * A111959 A111960 A111961


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Nov 28 2005


STATUS

approved



