This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077444 Numbers n such that (n^2 + 4)/2 is a square. 13
 2, 14, 82, 478, 2786, 16238, 94642, 551614, 3215042, 18738638, 109216786, 636562078, 3710155682, 21624372014, 126036076402, 734592086398, 4281516441986, 24954506565518, 145445522951122, 847718631141214 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The equation "(n^2 + 4)/2 is a square" is a version of the generalized Pell Equation x^2 - D*y^2 = C where x^2 - 2*y^2 = -4. Sequence of all positive integers k such that continued fraction [k,k,k,k,k,k,...] belongs to Q(sqrt(2)). - Thomas Baruchel, Sep 15 2003 Equivalently, 2*n^2 + 8 is a square. Numbers n such that (ceiling(sqrt(n*n/2)))^2 = 2 + n^2/2. - Ctibor O. Zizka, Nov 09 2009 The continued fraction [a(n);a(n),a(n),...] = (1 + sqrt(2))^(2*n-1). - Thomas Ordowski, Jun 07 2013 a((p+1)/2) == 2 mod p where p is an odd prime. - Altug Alkan, Mar 17 2016 REFERENCES A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966. L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400. Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147. LINKS S. Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, 2014, 5, 2226-2234. Tanya Khovanova, Recursive Sequences J. J. O'Connor and E. F. Robertson, Pell's Equation Eric Weisstein's World of Mathematics, Pell Equation Eric Weisstein's World of Mathematics, NSW Number Index entries for linear recurrences with constant coefficients, signature (6,-1) FORMULA a(n) = [ [(3+2*Sqrt(2))^n - (3-2*Sqrt(2))^n] + [(3+2*Sqrt(2))^(n-1) - 3-2*Sqrt(2))^(n-1)] ] / (2*Sqrt(2)). a(n) = 2*A002315(n-1). Recurrence: a(n) = 6*a(n-1) - a(n-2), starting 2, 14. Offset 0, with a=3+2sqrt(2), b=3-2sqrt(2): a(n)=a^((2n+1)/2)-b^((2n+1)/2). a(n)=2(A001109(n+1)+A001109(n))=(A003499(n+1)-A003499(n))/2=2sqrt(A001108(2n+1)) =sqrt(A003499(2n+1)-2). - Mario Catalani (mario.catalani(AT)unito.it), Mar 31 2003 Lim. n -> Inf. a(n)/a(n-1) = 5.82842712474619009760 = 3 + 2*Sqrt(2). G.f.: 2*x*(1+x)/(1-6*x+x^2). a(n) = 2*[7*A001109(n)-A001109(n+1)]. - R. J. Mathar, Nov 16 2007 a(n) = (1+sqrt(2))^(2*n-1)-(1+sqrt(2))^(1-2*n). - Gerson Washiski Barbosa, Sep 19 2010 a(n) = floor((1 + sqrt(2))^(2*n-1)). - Thomas Ordowski, Jun 07 2013 a(n) = sqrt(2*A075870(n)^2-4). - Derek Orr, Jun 18 2015 PROG (PARI) for(n=1, 20, q=(1+sqrt(2))^(2*n-1); print1(contfrac(q)[1], ", ")) \\ Derek Orr, Jun 18 2015 (PARI) Vec(2*x*(1+x)/(1-6*x+x^2) + O(x^100)) \\ Altug Alkan, Mar 17 2016 (MAGMA) [n: n in [0..10^8] | IsSquare((n^2 + 4) div 2)]; // Vincenzo Librandi, Jun 20 2015 CROSSREFS (A077445(n))^2 - 2*a(n) = 8. First differences of A001541. Pairwise sums of A001542. Bisection of A002203 and A080039. Sequence in context: A216985 A102401 A077461 * A138126 A268881 A053141 Adjacent sequences:  A077441 A077442 A077443 * A077445 A077446 A077447 KEYWORD nonn AUTHOR Gregory V. Richardson, Nov 09 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.