login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077446 Numbers n such that 2*n^2 + 14 is a square. 4
1, 5, 11, 31, 65, 181, 379, 1055, 2209, 6149, 12875, 35839, 75041, 208885, 437371, 1217471, 2549185, 7095941, 14857739, 41358175, 86597249, 241053109, 504725755, 1404960479, 2941757281, 8188709765, 17145817931, 47727298111 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The equation "2*n^2 + 14 is a square" is a version of the generalized Pell Equation x^2 - D*y^2 = C where x^2 - 2*y^2 = 14.

Numbers n such that (ceiling(sqrt(n*n/2)))^2 = (7+n^2)/2. - Ctibor O. Zizka, Nov 09 2009

From Wolfdieter Lang, Feb 26 2015: (Start)

This sequence gives all positive solutions x = a(n+1), n >= 0, of the Pell equation x^2 - 2*y^2 = -7. For the corresponding y-solutions see y(n) = 2*A006452(n+2) = A077447(n+1)/2. This implies that X^2 - 2*Y^2 = 14 has the general solutions (X(n),Y(n)) = (2*y(n), x(n)). See the first comment above.

For the positive first class solutions see (A054490(n), 2*A038723(n)) and for the second class solutions (A255236(n), 2*A038725(n+1)).

(End)

REFERENCES

A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.

L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.

Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.

LINKS

Table of n, a(n) for n=1..28.

J. J. O'Connor and E. F. Robertson, Pell's Equation

Eric Weisstein's World of Mathematics, ; Pell Equation

Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).

FORMULA

Lim. n-> Inf. a(n)/a(n-2) = 5.8284271247461... = 3 + 2*sqrt(2) = A156035 = RG (Great Ratio).

Lim. k-> Inf. a(2*k+1)/a(2*k) = 2.09383632135605... = (9 + 4*sqrt(2))/7 = A156649 = R1 (Ratio 1).

Lim. k -> Inf. a(2*k)/a(2*k-1) = 2.78361162489122432754 = (11 + 6*sqrt(2))/7 = R2 (Ratio 2); RG = R1*R2.

a(2*k-1) = [ 2*[(3+2*Sqrt(2))^n - (3-2*Sqrt(2))^n] - [(3+2*Sqrt(2))^(n-1) - (3-2*Sqrt(2))^(n-1)] + [(3+2*Sqrt(2))^(n-2) - (3-2*Sqrt(2))^(n-2)] ] / (4*Sqrt(2)) a(2*k) = [ 5*[(3+2*Sqrt(2))^n - (3-2*Sqrt(2))^n] + [(3+2*Sqrt(2))^(n-1) - (3-2*Sqrt(2))^(n-1)] ] / (4*Sqrt(2)).

a(n) = 6*a(n-2) - a(n-4).

G.f.: x*(1+x)*(x^2+4*x+1) / ( (x^2+2*x-1)*(x^2-2*x-1) ). - R. J. Mathar, Jul 03 2011

a(n) = 6*a(n-2) - a(n-4) with a(1)=1, a(2)=5, a(3)=11, a(4)=31. - Sture Sjöstedt, Oct 08 2012

Bisection: a(2*k+1) = S(k, 6) + 5*S(k-1, 6), a(2*k) = 5*S(n-1, 6) + S(n-2, 6), with the Chebyshev polynomials S(n, x) (A049310) with S(-2, x) = -1, S(-1, x) = 0, evaluated at x = 6. S(n, 6) = A001109(n-1). See A054490 and A255236, and the given g.f.s. -  Wolfdieter Lang, Feb 26 2015

EXAMPLE

n = 3: (A077447(3))^2 - 2*a(3)^2 = 16^2 - 2*11^2  = 14;

a(3)^2 - 2*(2*A006452(3+1))^2 = 11^2 - 2*(2*4)^2 = -7. - Wolfdieter Lang, Feb 26 2015

MATHEMATICA

LinearRecurrence[{0, 6, 0, -1}, {1, 5, 11, 31}, 50] (* Sture Sjöstedt, Oct 08 2012 *)

CROSSREFS

Cf. 2*(a(n))^2 + 14 = (A077447(n))^2. A006452, A155765, A054490, A255236.

Sequence in context: A038580 A106088 A246010 * A023276 A074648 A236428

Adjacent sequences:  A077443 A077444 A077445 * A077447 A077448 A077449

KEYWORD

nonn

AUTHOR

Gregory V. Richardson, Nov 09 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 05:08 EST 2017. Contains 294853 sequences.