

A075870


2*k^2  4 is a square.


14



2, 10, 58, 338, 1970, 11482, 66922, 390050, 2273378, 13250218, 77227930, 450117362, 2623476242, 15290740090, 89120964298, 519435045698, 3027489309890, 17645500813642, 102845515571962, 599427592618130, 3493720040136818, 20362892648202778, 118683635849079850
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Lim. n> Inf. a(n)/a(n1) = 3 + 2*Sqrt(2).
Also gives solutions to the equation x^22 = floor(x*r*floor(x/r)) where r=sqrt(2).  Benoit Cloitre, Feb 14 2004
The upper intermediate convergents to 2^(1/2) beginning with 10/7, 58/41, 338/239, 1970/1393 form a strictly decreasing sequence; essentially, numerators=A075870, denominators=A002315.  Clark Kimberling, Aug 27 2008
Numbers n such that sqrt(floor(n^2/2  1)) is an integer. The integer square roots are given by A002315.  Richard R. Forberg, Aug 01 2013
a(n) are the integer square roots of m^2 + (m+2)^2. The values of m are given by A065113 (except for m = 0). The values of this expression are given by A165518.  Richard R. Forberg, Aug 15 2013
Values of x (or y) in the solutions to x^2  6*x*y + y^2 + 16 = 0.  Colin Barker, Feb 04 2014
Also integers k such that k^2 is equal to the sum of four consecutive triangular numbers.  Colin Barker, Dec 20 2014


REFERENCES

A. H. Beiler, "The Pellian", ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248268, 1966.
L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341400.
Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139147.


LINKS

Colin Barker, Table of n, a(n) for n = 1..1000
Tanya Khovanova, Recursive Sequences
J. J. O'Connor and E. F. Robertson, Pell's Equation
Eric Weisstein's World of Mathematics, Pell Equation.
Index entries for linear recurrences with constant coefficients, signature (6,1).


FORMULA

a(n) = 2 * A001653(n).
a(n) = 1/sqrt(2)*((1+sqrt(2))^(2*n1)(1sqrt(2))^(2*n1)) = 6*a(n1)  a(n2).
G.f.: 2*x*(1x)/(16*x+x^2).  Philippe Deléham, Nov 17 2008


PROG

(PARI) Vec(2*x*(1x)/(16*x+x^2) + O(x^100)) \\ Colin Barker, Dec 20 2014


CROSSREFS

Sequence in context: A235321 A248403 A278095 * A074608 A086871 A108450
Adjacent sequences: A075867 A075868 A075869 * A075871 A075872 A075873


KEYWORD

nonn,easy


AUTHOR

Gregory V. Richardson, Oct 16 2002


EXTENSIONS

More terms from Colin Barker, Dec 20 2014


STATUS

approved



