login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077442 2*a(n)^2 + 7 is a square. 12
1, 3, 9, 19, 53, 111, 309, 647, 1801, 3771, 10497, 21979, 61181, 128103, 356589, 746639, 2078353, 4351731, 12113529, 25363747, 70602821, 147830751, 411503397, 861620759, 2398417561, 5021893803, 13979001969, 29269742059, 81475594253 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Lim. n -> Inf. a(n)/a(n-2) = 3 + 2*Sqrt(2) = R1*R2. Lim. k -> Inf. a(2*k-1)/a(2*k) = (9 + 4*Sqrt(2))/7 = R1 (ratio #1). Lim. k -> Inf. a(2*k)/a(2*k-1) = (11 + 6*Sqrt(2))/7 = R2 (ratio #2).

a(n) gives for n >= 0 all positive y-values solving the (generalized) Pell equation x^2 - 2*y^2 = 7. A077443(n+1) gives the corresponding x-values. See, e.g., the Nagell reference on how to find all solutions. - Wolfdieter Lang, Feb 05 2015

REFERENCES

L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.

A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.

Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.

T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, 1964, Theorem 109, pp. 207-208 with Theorem 104, pp. 197-198.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

J. J. O'Connor and E. F. Robertson, History of Pell's Equation

J. P. Robertson, Solving the Generalized Pell Equation

Eric Weisstein's World of Mathematics, Pell Equation.

Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).

FORMULA

For n>0, a(2n) = A046090(n) + A001653(n) + A001652(n-1); a(2n+1) = A001652(n+1) - A001652(n-1) - A001653(n-1); e.g. 53=21+29+3; 111=119-3-5. - Charlie Marion, Aug 14 2003

The same recurrences hold for the odd and even indices respectively : a(n+2) = 6*a(n+1) - a(n), a(n+1) = 3*a(n) + 2*(2*a(n)^2+7)^0.5. - Richard Choulet, Oct 11 2007

G.f.: (x+1)^3/(x^2+2*x-1)/(x^2-2*x-1). a(n)= [ -A077985(n)-3*A077985(n-1)+3*A000129(n+1)+A000129(n)]/2. - R. J. Mathar, Nov 16 2007

a(n) = 6*a(n-2) - a(n-4) with a(1)=1, a(2)=3, a(3)=9, a(4)=19. - Sture Sjöstedt, Oct 08 2012

a(n) = ((-(-1 - sqrt(2))^n*(-2+sqrt(2)) - (-1+sqrt(2))^n*(2+sqrt(2)) + (1-sqrt(2))^n*(-4+3*sqrt(2)) + (1+sqrt(2))^n*(4+3*sqrt(2))))/(4*sqrt(2)). - Colin Barker, Mar 27 2016

EXAMPLE

a(4)^2 - 2*a(3)^2 = 27^2 - 2*19^2  = +7. - Wolfdieter Lang, Feb 05 2015

MATHEMATICA

CoefficientList[Series[(1+3 x+3 x^2+x^3)/ (1-6 x^2+x^4), {x, 0, 50}], x]  (* Harvey P. Dale, Mar 12 2011 *)

LinearRecurrence[{0, 6, 0, -1}, {1, 3, 9, 19}, 50] (* Sture Sjöstedt, Oct 08 2012 *)

PROG

(PARI) a(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -1, 0, 6, 0]^n*[1; 3; 9; 19])[1, 1] \\ Charles R Greathouse IV, Jun 20 2015

(PARI) Vec((x+1)^3/(x^2+2*x-1)/(x^2-2*x-1) + O(x^50)) \\ Colin Barker, Mar 27 2016

CROSSREFS

Cf. A077443, A038762, A038761, A101386, A253811.

Sequence in context: A146901 A147477 A146677 * A147455 A146429 A018316

Adjacent sequences:  A077439 A077440 A077441 * A077443 A077444 A077445

KEYWORD

nonn,easy

AUTHOR

Gregory V. Richardson, Nov 06 2002

EXTENSIONS

Edited: n in Name replaced by a(n). Pell comments moved to comment section. - Wolfdieter Lang, Feb 05 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 27 11:25 EDT 2017. Contains 288788 sequences.