login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080039 a(n) = floor((1+sqrt(2))^n). 10
1, 2, 5, 14, 33, 82, 197, 478, 1153, 2786, 6725, 16238, 39201, 94642, 228485, 551614, 1331713, 3215042, 7761797, 18738638, 45239073, 109216786, 263672645, 636562078, 1536796801, 3710155682, 8957108165, 21624372014, 52205852193 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) = P(n) - (1+(-1)^n)/2, where P(n) is the Pell sequence (A000129) with initial conditions 2, 2.

For n>0 a(n) is the maximum element in the continued fraction for P(n)*sqrt(2) where P=A000129 - Benoit Cloitre, Jun 19 2005

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: g(t) = (1-t^2+2*t^3)/(1-2*t-2*t^2+2*t^3+t^4).

Comments from Hieronymus Fischer, Jan 02 2009 (Start): The fractional part of (1+sqrt(2))^n equals (1+sqrt(2))^(-n), if n odd. For even n, the fractional part of (1+sqrt(2))^n is equal to 1-(1+sqrt(2))^(-n).

fract((1+sqrt(2))^n)) = (1/2)*(1+(-1)^n)-(-1)^n*(1+sqrt(2))^(-n) = (1/2)*(1+(-1)^n)-(1-sqrt(2))^n.

See A001622 for a general formula concerning the fractional parts of powers of numbers x>1, which satisfy x-x^(-1)=floor(x).

a(n) = (sqrt(2)+1)^n - (1/2) + (-1)^n*((sqrt(2)-1)^n - (1/2)) for n>0. (End)

MATHEMATICA

CoefficientList[Series[(1-t^2+2t^3)/(1-2t-2t^2+2t^3+t^4), {t, 0, 30}], t]

PROG

(PARI) t='t+O('t^50); Vec((1-t^2+2t^3)/(1-2t-2t^2+2t^3+t^4)) \\ G. C. Greubel, Jul 05 2017

CROSSREFS

Cf. A001622, A006497, A014176, A098316.

Sequence in context: A096772 A090803 A018015 * A265226 A131408 A137917

Adjacent sequences:  A080036 A080037 A080038 * A080040 A080041 A080042

KEYWORD

easy,nonn

AUTHOR

Mario Catalani (mario.catalani(AT)unito.it), Jan 21 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 12 16:18 EST 2017. Contains 295939 sequences.