login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066325 Coefficients of unitary Hermite polynomials He_n(x). 12
1, 0, 1, -1, 0, 1, 0, -3, 0, 1, 3, 0, -6, 0, 1, 0, 15, 0, -10, 0, 1, -15, 0, 45, 0, -15, 0, 1, 0, -105, 0, 105, 0, -21, 0, 1, 105, 0, -420, 0, 210, 0, -28, 0, 1, 0, 945, 0, -1260, 0, 378, 0, -36, 0, 1, -945, 0, 4725, 0, -3150, 0, 630, 0, -45, 0, 1, 0, -10395, 0, 17325, 0, -6930, 0, 990, 0, -55, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

Also number of involutions on n labeled elements with k fixed points times (-1)^(number of 2-cycles).

Also called normalized Hermite polynomials.

He_n(x) := H_n(x/sqrt(2)) / sqrt(2)^n, with the coefficients of H_n(x) given in A060821. See the Maple program. - Wolfdieter Lang, Jan 13 2020

REFERENCES

F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, pp. 89,94 (2.3.41,54).

LINKS

Robert Israel, Rows n=0..140 of triangle, flattened

P. Barry, Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms, J. Int. Seq. 14 (2011) # 11.2.2, chapter 8.

P. Diaconis and A. Gamburd, Random matrices, magic squares and matching polynomials, The Electronic Journal of Combinatorics, Volume 11, Issue 2 (2004-6), Research Paper #R2.

E. Elizalde, Cosmology: techniques and observations, arXiv:gr-qc/0409076, 2004.

D. Foata, Une méthode combinatoire pour l'étude des fonctions spéciales, Journées sur les méthodes en mathématiques, Institut Henri Poincaré, Paris 2-3 april 2003.

R. Sazdanovic, A categorification of the polynomial ring, slide presentation, 2011. [Tom Copeland, Dec 27 2015]

Index entries for sequences related to Hermite polynomials

FORMULA

T(n, k) = (-2)^((k-n)/2)*n!/(k!*((n-k)/2)!) for n-k even, 0 otherwise.

E.g.f. of row polynomials {He_n(y)}:  A(x, y) = exp(x*y - x^2/2).

The umbral compositional inverses (cf. A001147) of the polynomials He(n,x) are given by the same polynomials unsigned, A099174. - Tom Copeland, Nov 15 2014

Exp(-D^2/2) x^n = He_n(x) = p_n(x+1) with D = d/dx and p_n(x), the row polynomials of A159834. These are an Appell sequence of polynomials with lowering and raising operators L = D and R = x - D. - Tom Copeland, Jun 26 2018

EXAMPLE

Triangle begins:

    1;

    0,     1;

   -1,     0,   1;

    0,    -3,   0,    1;

    3,     0,  -6,    0,   1;

    0,    15,   0,  -10,   0,   1;

  -15,     0,  45,    0, -15,   0,  1;

    0,  -105,   0,  105,   0, -21,  0, 1;

  ...

MAPLE

Q:= [seq(orthopoly[H](n, x/sqrt(2))/2^(n/2), n=0..20)]:

seq(seq(coeff(Q[n+1], x, k), k=0..n), n=0..20); # Robert Israel, Jan 01 2016

MATHEMATICA

H[0, x_] = 1; H[1, x_] := x; H[n_, x_] := H[n, x] = x*H[n-1, x] - (n-1)*H[n-2, x] // Expand; Table[CoefficientList[H[n, x], x], {n, 0, 11}] // Flatten (* Jean-François Alcover, May 11 2015 *)

PROG

(Sage)

def A066325_row(n):

    T = [0]*(n+1)

    if n==1: return [1]

    for m in (1..n-1):

        a, b, c = 1, 0, 0

        for k in range(m, -1, -1):

            r = a - (k+1)*c

            if k < m : T[k+2] = u;

            a, b, c = T[k-1], a, b

            u = r

        T[1] = u;

    return T[1:]

for n in (1..11): A066325_row(n)  # Peter Luschny, Nov 01 2012

(Sage) # uses[riordan_array from A256893]

riordan_array(exp(-x^2/2), x, 8, True) # Peter Luschny, Nov 23 2018

(Python)

from sympy import Poly

from sympy.abc import x

def H(n, x): return 1 if n==0 else x if n==1 else x*H(n - 1, x) - (n - 1)*H(n - 2, x)

def a(n): return Poly(H(n, x), x).all_coeffs()[::-1]

for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017

(PARI) for(n=0, 12, for(k=0, n, print1(if(Mod(n-k, 2)==0, (-2)^((k-n)/2)*n!/(k!*((n-k)/2)!), 0), ", "))) \\ G. C. Greubel, Nov 23 2018

CROSSREFS

Row sums: A001464 (with different signs).

Row sums of absolute values: A000085.

Absolute values are given in A099174.

Cf. A159834, A001147, A060281 (Hermite H_n(x)).

Sequence in context: A256037 A179898 A099174 * A137297 A178117 A095710

Adjacent sequences:  A066322 A066323 A066324 * A066326 A066327 A066328

KEYWORD

sign,easy,tabl

AUTHOR

Christian G. Bower, Dec 14 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 23 14:26 EST 2020. Contains 338590 sequences. (Running on oeis4.)