login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066325 Coefficients of unitary Hermite polynomials He_n(x). 11

%I

%S 1,0,1,-1,0,1,0,-3,0,1,3,0,-6,0,1,0,15,0,-10,0,1,-15,0,45,0,-15,0,1,0,

%T -105,0,105,0,-21,0,1,105,0,-420,0,210,0,-28,0,1,0,945,0,-1260,0,378,

%U 0,-36,0,1,-945,0,4725,0,-3150,0,630,0,-45,0,1,0,-10395,0,17325,0

%N Coefficients of unitary Hermite polynomials He_n(x).

%C Also number of involutions on n labeled elements with k fixed points times (-1)^(number of 2-cycles).

%C Also called normalized Hermite polynomials.

%D F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, pp. 89,94 (2.3.41,54).

%H Robert Israel, <a href="/A066325/b066325.txt">Table of n, a(n) for n = 0..10010</a> (rows 0 to 140, flattened)

%H P. Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Barry1/barry97r2.html">Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms</a>, J. Int. Seq. 14 (2011) # 11.2.2, chapter 8.

%H P. Diaconis and A. Gamburd, <a href="http://www.combinatorics.org/Volume_11/Abstracts/v11i2r2.html">Random matrices, magic squares and matching polynomials</a>, The Electronic Journal of Combinatorics, Volume 11, Issue 2 (2004-6), Research Paper #R2.

%H E. Elizalde, <a href="http://arXiv.org/abs/gr-qc/0409076">Cosmology: techniques and observations</a>, arXiv:gr-qc/0409076, 2004.

%H D. Foata, <a href="http://www-irma.u-strasbg.fr/~foata/paper/pub94.html">Une méthode combinatoire pour l'étude des fonctions spéciales</a>, Journés sur les méthodes en mathématiques, Institut Henri Poincaré, Paris 2-3 april 2003.

%H R. Sazdanovic, <a href="http://www.math.toronto.edu/~drorbn/SK11/Sazdanovic.pdf ">A categorification of the polynomial ring</a>, slide presentation, 2011. (From Tom Copeland, Dec 27 2015)

%H <a href="/index/He#Hermite">Index entries for sequences related to Hermite polynomials</a>

%F T(n, k) = (-2)^((k-n)/2)*n!/(k!*((n-k)/2)!) for n-k even, 0 otherwise.

%F E.g.f. (relative to x): A(x, y) = exp(x*y - x^2/2).

%F The umbral compositional inverses (cf. A001147) of the polynomials He(n,x) are given by the same polynomials unsigned, A099174. - _Tom Copeland_, Nov 15 2014

%F Exp(-D^2/2) x^n = He_n(x) = p_n(x+1) with D = d/dx and p_n(x), the row polynomials of A159834. These are an Appell sequence of polynomials with lowering and raising operators L = D and R = x - D. - _Tom Copeland_, Jun 26 2018

%e Triangle begins:

%e 1;

%e 0, 1;

%e -1, 0, 1;

%e 0, -3, 0, 1;

%e 3, 0, -6, 0, 1;

%e ...

%p Q:= [seq(orthopoly[H](n,x/sqrt(2))/2^(n/2), n=0..20)]:

%p seq(seq(coeff(Q[n+1],x,k),k=0..n),n=0..20); # _Robert Israel_, Jan 01 2016

%t H[0, x_] = 1; H[1, x_] := x; H[n_, x_] := H[n, x] = x*H[n-1, x] - (n-1)*H[n-2, x] // Expand; Table[CoefficientList[H[n, x], x], {n, 0, 11}] // Flatten (* _Jean-François Alcover_, May 11 2015 *)

%o (Sage)

%o def A066325_row(n):

%o T = [0]*(n+1)

%o if n==1: return [1]

%o for m in (1..n-1):

%o a,b,c = 1,0,0

%o for k in range(m,-1,-1):

%o r = a - (k+1)*c

%o if k < m : T[k+2] = u;

%o a,b,c = T[k-1],a,b

%o u = r

%o T[1] = u;

%o return T[1:]

%o for n in (1..11): A066325_row(n) # _Peter Luschny_, Nov 01 2012

%o (Python)

%o from sympy import Poly

%o def H(n, x): return 1 if n==0 else x if n==1 else x*H(n - 1, x) - (n - 1)*H(n - 2, x)

%o def a(n): return Poly(H(n, x), x).all_coeffs()[::-1]

%o for n in xrange(21): print a(n) # _Indranil Ghosh_, May 26 2017

%Y Row sums: A001464 (with different signs). Row sums of absolute values: A000085.

%Y Cf. A060281.

%Y Absolute values are given in A099174. - _M. F. Hasler_, Oct 08 2012

%Y Cf. A001147.

%Y Cf. A159834.

%K sign,tabl

%O 0,8

%A _Christian G. Bower_, Dec 14 2001

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 20:30 EDT 2018. Contains 315270 sequences. (Running on oeis4.)