login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A247622 Triangular array:  T(n,k) = number of paths from (0,0) to (n,k), each segment given by a vector (1,1), (1,-1), or (2,0), not crossing the x-axis, and including no horizontal segment on the x-axis. 2
1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 3, 0, 5, 0, 1, 0, 11, 0, 7, 0, 1, 11, 0, 23, 0, 9, 0, 1, 0, 45, 0, 39, 0, 11, 0, 1, 45, 0, 107, 0, 59, 0, 13, 0, 1, 0, 197, 0, 205, 0, 83, 0, 15, 0, 1, 197, 0, 509, 0, 347, 0, 111, 0, 17, 0, 1, 0, 903, 0, 1061, 0, 541, 0, 143, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..1000

EXAMPLE

First 9 rows:

1

0 ... 1

1 ... 0 ... 1

0 ... 3 ... 0 ... 1

3 ... 0 ... 5 ... 0 ... 1

0 ... 11 .. 0 ... 7 ... 0 ...1

11 .. 0 ... 23 .. 0 ... 9 ... 0 ... 1

0 ... 45 .. 0 ... 39 .. 0 ... 11 .. 0 ... 1

45 .. 0 ... 107 . 0 ... 59 .. 0 ... 13 .. 0 ... 1

T(3,1) counts these 3 paths given as vector sums applied to (0,0):

(1,1) + (1,-1), (2,0), (1,-1) + (1,1).

MATHEMATICA

t[0, 0] = 1; t[1, 1] = 1; t[2, 0] = 1; t[2, 2] = 1; t[n_, k_] := t[n, k] = If[n >= 2 && k >= 1, t[n - 1, k - 1] + t[n - 1, k + 1] + t[n - 2, k], 0]; t[n_, 0] := t[n, 0] = t[n - 1, 1]; u = Table[t[n, k], {n, 0, 16}, {k, 0, n}];

v = Flatten[u] (* A247622 sequence *)

TableForm[u]   (* A247622 array *)

Map[Total, u]  (* A247623 *)

CROSSREFS

Cf. A247623, A247629, A026300, A001003 (1st column of this triangle).

Sequence in context: A035653 A126595 A286096 * A256037 A179898 A066325

Adjacent sequences:  A247619 A247620 A247621 * A247623 A247624 A247625

KEYWORD

nonn,tabl,easy

AUTHOR

Clark Kimberling, Sep 21 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 01:17 EDT 2018. Contains 315360 sequences. (Running on oeis4.)