|
|
A256037
|
|
Triangle read by rows: number of R-class idempotents of rank k in Brauer monoid B_n.
|
|
0
|
|
|
1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 3, 0, 5, 0, 1, 0, 15, 0, 7, 0, 1, 15, 0, 35, 0, 9, 0, 1, 0, 105, 0, 63, 0, 11, 0, 1, 105, 0, 315, 0, 99, 0, 13, 0, 1, 0, 945, 0, 693, 0, 143, 0, 15, 0, 1, 945, 0, 3465, 0, 1287, 0, 195, 0, 17, 0, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,8
|
|
LINKS
|
Table of n, a(n) for n=0..65.
I. Dolinka, J. East, A. Evangelou, D. FitzGerald, N. Ham, et al., Enumeration of idempotents in diagram semigroups and algebras, arXiv preprint arXiv:1408.2021 [math.GR], 2014.
|
|
FORMULA
|
Conjecture: T(n,k) = (n+k-1)!!/(2k-1)!! for n+k even, T(n,k) = 0 otherwise. - Jean-François Alcover, Feb 11 2019
|
|
EXAMPLE
|
Triangle begins:
1,
0, 1,
1, 0, 1,
0, 3, 0, 1,
3, 0, 5, 0, 1,
0, 15, 0, 7, 0, 1,
15, 0, 35, 0, 9, 0, 1,
0, 105, 0, 63, 0, 11, 0, 1,
105, 0, 315, 0, 99, 0, 13, 0, 1,
0, 945, 0, 693, 0, 143, 0, 15, 0, 1,
945, 0, 3465, 0, 1287, 0, 195, 0, 17, 0, 1,
...
|
|
CROSSREFS
|
Sequence in context: A126595 A286096 A247622 * A179898 A099174 A066325
Adjacent sequences: A256034 A256035 A256036 * A256038 A256039 A256040
|
|
KEYWORD
|
nonn,tabl,changed
|
|
AUTHOR
|
N. J. A. Sloane, Mar 14 2015
|
|
STATUS
|
approved
|
|
|
|