login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062073
Decimal expansion of Fibonacci factorial constant.
33
1, 2, 2, 6, 7, 4, 2, 0, 1, 0, 7, 2, 0, 3, 5, 3, 2, 4, 4, 4, 1, 7, 6, 3, 0, 2, 3, 0, 4, 5, 5, 3, 6, 1, 6, 5, 5, 8, 7, 1, 4, 0, 9, 6, 9, 0, 4, 4, 0, 2, 5, 0, 4, 1, 9, 6, 4, 3, 2, 9, 7, 3, 0, 1, 2, 1, 4, 0, 2, 2, 1, 3, 8, 3, 1, 5, 3, 1, 2, 1, 6, 8, 4, 5, 2, 6, 2, 1, 5, 6, 2, 4, 9, 4, 7, 9, 7, 7, 4, 1, 2, 5, 9, 1, 3
OFFSET
1,2
COMMENTS
The Fibonacci factorial constant is associated with the Fibonacci factorial A003266.
Two closely related constants are A194159 and A194160. [Johannes W. Meijer, Aug 21 2011]
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.5.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison Wesley, 1990, pp. 478, 571.
LINKS
M. Griffiths, Symmetric rational expressions in the Fibonacci numbers, Fib. Q., 46/47 (2008/2009), 262-267. [N. J. A. Sloane, Dec 05 2009]
Simon Plouffe, Fibonacci factorials
Eric Weisstein's World of Mathematics, Fibonacci Factorial Constant
FORMULA
C = (1-a)*(1-a^2)*(1-a^3)... 1.2267420... where a = -1/phi^2 and where phi is the Golden ratio = 1/2 + sqrt(5)/2.
C = QPochhammer[ -1/GoldenRatio^2]. [Eric W. Weisstein, Dec 01 2009]
C = A194159 * A194160. [Johannes W. Meijer, Aug 21 2011]
C = exp( Sum_{k>=1} 1/(k*(1-(-(3+sqrt(5))/2)^k)) ). - Vaclav Kotesovec, Jun 08 2013
C = Sum_{k = -inf .. inf} (-1)^((k-1)*k/2) / phi^((3*k-1)*k), where phi = (1 + sqrt(5))/2. - Vladimir Reshetnikov, Sep 20 2016
EXAMPLE
1.226742010720353244417630230455361655871409690440250419643297301214...
MATHEMATICA
RealDigits[N[QPochhammer[-1/GoldenRatio^2], 105]][[1]] (* Alonso del Arte, Dec 20 2010 *)
RealDigits[N[Re[(-1)^(1/24) * GoldenRatio^(1/12) / 2^(1/3) * EllipticThetaPrime[1, 0, -I/GoldenRatio]^(1/3)], 120]][[1]] (* Vaclav Kotesovec, Jul 19 2015, after Eric W. Weisstein *)
PROG
(PARI) \p 1300 a=-1/(1/2+sqrt(5)/2)^2; prod(n=1, 17000, (1-a^n))
(PARI) { default(realprecision, 5080); p=-1/(1/2 + sqrt(5)/2)^2; x=prodinf(k=1, 1-p^k); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b062073.txt", n, " ", d)) } \\ Harry J. Smith, Jul 31 2009
KEYWORD
easy,nonn,cons,changed
AUTHOR
Jason Earls, Jun 27 2001
STATUS
approved