login
A062072
Continued fraction expansion of Fibonacci factorial constant.
2
1, 4, 2, 2, 3, 2, 15, 9, 1, 2, 1, 2, 15, 7, 6, 21, 3, 5, 1, 23, 1, 11, 1, 7, 1, 3, 1, 12, 2, 1, 1, 1, 7, 1, 3, 1, 12, 2, 1, 2, 2, 9, 27, 1, 1, 1, 1, 2, 19, 3, 8, 1, 1, 15, 3, 1, 2, 1, 1, 1, 3, 2, 3, 8, 1, 1, 14, 1, 49, 2, 1, 17, 4, 2, 1, 2, 2, 1, 3, 1, 5, 1, 1, 3, 1, 2, 1, 4, 1, 2, 5, 1, 3, 2, 1, 1, 2, 6
OFFSET
0,2
REFERENCES
R. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Addison Wesley, 1990, pp. 478, 571.
LINKS
Simon Plouffe, Plouffe's Inverter
FORMULA
C = (1-a)*(1-a^2)*(1-a^3)... 1.2267420... where a = -1/phi^2 and where phi is the Golden ratio = 1/2 + sqrt(5)/2.
EXAMPLE
1.2267420107203532444176302...
PROG
(PARI) \p 500 a=-1/(1/2+sqrt(5)/2)^2; contfrac(prod(n=1, 17000, (1-a^n)))
(PARI) { allocatemem(932245000); default(realprecision, 5300); p=-1/(1/2 + sqrt(5)/2)^2; x=contfrac(prodinf(k=1, 1-p^k)); for (n=1, 5000, write("b062072.txt", n-1, " ", x[n])) } \\ Harry J. Smith, Jul 31 2009
CROSSREFS
Cf. A062073 (decimal expansion).
Sequence in context: A376129 A112349 A231821 * A355849 A140395 A061505
KEYWORD
easy,nonn,cofr
AUTHOR
Jason Earls, Jun 27 2001
EXTENSIONS
Offset changed by Andrew Howroyd, Aug 04 2024
STATUS
approved