login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A174789 Triangle read by rows: expansion of Sum_{k=0..n} binomial(n, k)*(Product_{j=0..n-k+1} (x + i)) * (-1)^k * x^(k-1). 2
1, 2, 2, 6, 7, 1, 24, 32, 8, 120, 178, 61, 3, 720, 1164, 494, 50, 5040, 8748, 4348, 655, 15, 40320, 74304, 41768, 8204, 420, 362880, 704016, 437148, 104272, 8365, 105, 3628800, 7362720, 4965912, 1376864, 149282, 4410, 39916800, 84255840, 60961176, 19079836, 2580550, 123795, 945 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Row sums are: {1, 4, 14, 64, 362, 2428, 18806, 165016, 1616786, 17487988, 206918942, ...}.

LINKS

G. C. Greubel, Rows n = 0..25 of triangle, flattened

EXAMPLE

Triangle begins as:

        1;

        2,       2;

        6,       7,       1;

       24,      32,       8;

      120,     178,      61,       3;

      720,    1164,     494,      50;

     5040,    8748,    4348,     655,     15;

    40320,   74304,   41768,    8204,    420;

   362880,  704016,  437148,  104272,   8365,  105;

  3628800, 7362720, 4965912, 1376864, 149282, 4410;

MATHEMATICA

p[x, 0]:= 1; p[x_, n_]:= Sum[Binomial[n, k]* Product[x+j, {j, 0, n-k+1}] *(-x)^k, {k, 0, n}]/x; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]//Flatten

p[x_, 0]:= 1; p[x_, n_]:= (x+1)*Pochhammer[x+2, n]*Hypergeometric1F1[-n, -1-n-x, -x]; Table[CoefficientList[Series[p[x, n], {x, 0, 50}], x], {n, 0, 12}]//Flatten (* G. C. Greubel, Apr 22 2019 *)

CROSSREFS

Sequence in context: A186944 A247525 A305295 * A210865 A210861 A062073

Adjacent sequences:  A174786 A174787 A174788 * A174790 A174791 A174792

KEYWORD

nonn,tabl

AUTHOR

Roger L. Bagula, Mar 29 2010

EXTENSIONS

Edited by G. C. Greubel, Apr 22 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 16 15:17 EST 2020. Contains 331961 sequences. (Running on oeis4.)