login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003267 Central Fibonomial coefficients.
(Formerly M4272)
5
1, 1, 6, 60, 1820, 136136, 27261234, 14169550626, 19344810307020, 69056421075989160, 645693859487298425256, 15803204856220738696714416, 1012673098498882654470985390406, 169885799961166470686816475170920550 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The largest prime factor of a(n): 1, 1, 3, 5, 13, 17, 89, 233, 233, 1597, 1597, 1597, 28657, 28657, 28657, 514229, 514229, 514229, 514229, 514229, 514229, 514229, 433494437, 433494437, 2971215073, ..., . The union of the above list is: 1, 3, 5, 13, 17, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 14736206161, 46165371073, 92180471494753, 99194853094755497, ... . - Robert G. Wilson v, Dec 04 2009

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=0..13.

A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.

A. Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 74.

Eric Weisstein's World of Mathematics, Central Fibonomial Coefficient [From Eric W. Weisstein, Dec 08 2009]

Eric Weisstein's World of Mathematics, q-Binomial Coefficient.

FORMULA

For n > 0, a(n) = (-1)^floor(n/2)*det(M(n, -1))/det(M(n, 0)) where M(n, m) is the n X n matrix with coefficient 1/F(i+j+m), i=1..n, j=1..n. - Benoit Cloitre, Jun 05 2004

For n > 0, a(n) = -(GoldenRatio^(n^2) QPochhammer[(-1)^n GoldenRatio^(-2 n), -GoldenRatio^-2, 1 + n])/((-1 + (-1)^n GoldenRatio^(-2 n)) QPochhammer[ -GoldenRatio^-2, -GoldenRatio^-2, n]). - Eric W. Weisstein, Dec 08 2009

a(n) ~ phi^(n^2) / C, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio and C = A062073 = 1.22674201072035324441763... is the Fibonacci factorial constant. - Vaclav Kotesovec, Apr 10 2015

a(n) = phi^(n^2) * C(2*n, n)_{-1/phi^2}, where phi = (1+sqrt(5))/2 = A001622 is the golden ratio, and C(n, k)_q is the q-binomial coefficient. - Vladimir Reshetnikov, Sep 26 2016

a(n) = A010048(2*n, n). - Vladimir Reshetnikov, Sep 27 2016

MAPLE

with(combinat): a := n -> product(fibonacci(n+k+1), k=0..n-1)/product(fibonacci(k), k=1..n):

seq(a(n), n=0..20);

MATHEMATICA

f[n_] := Product[Fibonacci[n + k + 1]/Fibonacci[k + 1], {k, 0, n - 1}]; Array[f, 14, 0] (* Robert G. Wilson v, Dec 04 2009 *)

Flatten[{1, Table[Round[-(GoldenRatio^(n^2) QPochhammer[(-1)^n GoldenRatio^(-2 n), -GoldenRatio^-2, 1 + n])/((-1 + (-1)^n GoldenRatio^(-2 n)) QPochhammer[ -GoldenRatio^-2, -GoldenRatio^-2, n])], {n, 1, 15}]}]  (* Vaclav Kotesovec, Apr 10 2015 after Eric W. Weisstein *)

Round@Table[GoldenRatio^(n^2) QBinomial[2 n, n, -1/GoldenRatio^2], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Sep 25 2016 *)

PROG

(PARI) a(n)=prod(k=0, n-1, fibonacci(n+k+1))/prod(k=1, n, fibonacci(k))

for(n=0, 14, print1(a(n), ", "))

CROSSREFS

Bisection of A003268. Cf. A008341.

Cf. A001622, A062073, A062381.

Sequence in context: A285955 A001416 A251184 * A271681 A010574 A271682

Adjacent sequences:  A003264 A003265 A003266 * A003268 A003269 A003270

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Sascha Kurz and Rick L. Shepherd, Mar 24 2002

a(1) = 1 added by N. J. A. Sloane, Dec 06 2009

Typo in second formula corrected by Vaclav Kotesovec, Apr 10 2015

Offset corrected from 1 to 0, formulae and programs are updated accordingly by Vladimir Reshetnikov, Sep 27 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 26 15:27 EDT 2017. Contains 292531 sequences.