|
|
A218490
|
|
Decimal expansion of Lucas factorial constant.
|
|
7
|
|
|
1, 3, 5, 7, 8, 7, 8, 4, 0, 7, 6, 1, 2, 1, 0, 5, 7, 0, 1, 3, 8, 7, 4, 3, 9, 7, 0, 9, 7, 6, 0, 6, 0, 7, 1, 8, 5, 5, 7, 8, 6, 0, 5, 8, 6, 5, 2, 9, 5, 6, 7, 8, 7, 0, 4, 4, 9, 6, 8, 7, 8, 2, 5, 4, 3, 8, 4, 0, 7, 1, 9, 1, 1, 0, 3, 4, 8, 6, 2, 3, 3, 6, 8, 7, 7, 1, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The Lucas factorial constant is associated with the Lucas factorial A135407.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
Equals exp( Sum_{k>=1} 1/(k*(((3-sqrt(5))/2)^k-(-1)^k)) ). - Vaclav Kotesovec, Jun 08 2013
Equals Product_{k=0..infinity} (1 + (-1)^k/phi^(2*k)). - G. C. Greubel, Dec 23 2017
Equals lim_{n->oo} A135407(n)/phi^(n*(n+1)/2), where phi is the golden ratio (A001622). - Amiram Eldar, Jan 23 2022
|
|
EXAMPLE
|
1.35787840761210570138743970976060718557860586529567870449687825438407191103...
|
|
MATHEMATICA
|
RealDigits[QPochhammer[-1, -1/GoldenRatio^2], 10, 105][[1]] (* slightly modified by Robert G. Wilson v, Dec 21 2017 *)
|
|
PROG
|
(PARI) prodinf(j=0, 1 + ((sqrt(5) - 3)/2)^j) \\ Iain Fox, Dec 21 2017
|
|
CROSSREFS
|
Cf. A062073, A135407, A070825, A003266, A000032, A000045, A186269, A001622.
Sequence in context: A131979 A335894 A101496 * A161696 A196084 A008508
Adjacent sequences: A218487 A218488 A218489 * A218491 A218492 A218493
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
Vaclav Kotesovec, Oct 30 2012
|
|
STATUS
|
approved
|
|
|
|