login
A057979
a(n) = 1 for even n and (n-1)/2 for odd n.
17
1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 1, 11, 1, 12, 1, 13, 1, 14, 1, 15, 1, 16, 1, 17, 1, 18, 1, 19, 1, 20, 1, 21, 1, 22, 1, 23, 1, 24, 1, 25, 1, 26, 1, 27, 1, 28, 1, 29, 1, 30, 1, 31, 1, 32, 1, 33, 1, 34, 1, 35, 1, 36, 1, 37, 1, 38, 1, 39, 1, 40, 1, 41, 1, 42, 1, 43, 1
OFFSET
0,6
COMMENTS
a(n) = b(n)/c(n) where b(n) = A001405(n+1) - A001405(n), c(n) = gcd(A001405(n+1), A001405(n)).
Also the minimal number of disjoint edge-paths into which the complete graph on n edges can be partitioned - Felix Goldberg (felixg(AT)tx.technion.ac.il), Jan 19 2001
For n >= 2, number of partitions of n-2 into parts that are distinct mod 2. - Giovanni Resta, Feb 06 2006
Sequence starting with a(3) obeys the rule "smallest positive value such that the ordered pair (a(n-1),a(n)) has not occurred previously", or the rule "smallest positive value such that the ratio a(n-1)/a(n) has not occurred previously". The same subsequence has its ordinal transform equal to itself, shifted left. (The ordinal transform has as its n-th term the number of values in a(1),...,a(n) that are equal to a(n).) - Franklin T. Adams-Watters, Dec 13 2006
Numerators of floor(n/2)/n, n > 0. - Wesley Ivan Hurt, Jun 14 2013
Number of nonisomorphic outer planar graphs of order n >= 3, maximum degree 3, and largest possible size. The size is (3n-2)/2 when n is even and (3n-3)/2 when n is odd. - Christian Barrientos and Sarah Minion, Feb 27 2018
LINKS
FORMULA
a(n) = (n+1)/4+(3-n)*(-1)^n/4. - Paul Barry, Mar 21 2003, corrected by Hieronymus Fischer, Sep 25 2007
a(n) = (a(n-2) + a(n-3)) / a(n-1).
From Paul Barry, Oct 21 2004: (Start)
G.f.: (1-x^2+x^3)/((1+x)^2(1-x)^2);
a(n) = 2*a(n-2) - a(n-4);
a(n) = 0^n + Sum_{k=0..floor((n-2)/2)} C(n-k-2,k) * C(1,n-2k-2). (End)
a(n) = gcd(n-1, floor((n-1)/2)). - Paul Barry, May 02 2005
a(n) = binomial((2n-3)/4-(-1)^n/4, (1-(-1)^n)/2). - Paul Barry, Jun 29 2006
G.f.: (x^3-x^2+1)/(1-x^2)^2 = 1 + x^2*G(0) where G(k) = 1 + x*(k+1)/(1 - x/(x + (k+1)/G(k+1) )); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 29 2012
a(n) = binomial(floor(n/2), n mod 2). - Wesley Ivan Hurt, Oct 14 2013
a(n) = 1 - n mod 2 * (1 - floor(n/2)). - Reinhard Zumkeller, Aug 11 2014
a(n) = floor(n/2)^(n mod 2). - Wesley Ivan Hurt, Mar 16 2015
E.g.f.: ((2 + x)*cosh(x) - sinh(x))/2. - Stefano Spezia, Mar 26 2022
EXAMPLE
For n=12, C(12,6) - C(11,5) = 924 - 462 = 462, gcd(C(12,6), C(11,5)) = 462, and the quotient is 1.
For n=13, C(13,6) - C(12,6) = 792, gcd(C(13,6), C(12,6)) = 132, and the quotient is 6.
MAPLE
A057979:=n->(n+1)/4+(3-n)*(-1)^n/4; seq(A057979(k), k=0..100); # Wesley Ivan Hurt, Oct 14 2013
MATHEMATICA
With[{no=45}, Riffle[Table[1, {no}], Range[0, no-1]]] (* Harvey P. Dale, Feb 18 2011 *)
PROG
(Haskell)
import Data.List (transpose)
a057979 n = 1 - rest * (1 - n') where (n', rest) = divMod n 2
a057979_list = concat $ transpose [repeat 1, [0..]]
-- Reinhard Zumkeller, Aug 11 2014
(Magma) [Floor(n/2)^(n mod 2): n in [0..100]]; // Vincenzo Librandi, Mar 17 2015
(PARI) a(n)=if(n%2, n-1, 2)/2 \\ Charles R Greathouse IV, Sep 02 2015
(Python)
def A057979(n): return n>>1 if n&1 else 1 # Chai Wah Wu, Jan 04 2024
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Nov 13 2000
STATUS
approved