login
A158416
Expansion of g.f. (1+x-x^3)/(1-x^2)^2.
10
1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 1, 11, 1, 12, 1, 13, 1, 14, 1, 15, 1, 16, 1, 17, 1, 18, 1, 19, 1, 20, 1, 21, 1, 22, 1, 23, 1, 24, 1, 25, 1, 26, 1, 27, 1, 28, 1, 29, 1, 30, 1, 31, 1, 32, 1, 33, 1, 34, 1, 35, 1, 36, 1, 37, 1, 38, 1, 39, 1, 40, 1, 41, 1, 42, 1, 43, 1, 44, 1
OFFSET
0,3
COMMENTS
Binomial transform is A111297. Binomial transform of [1,1,1,2,1,3,1,...] is A109975.
Essentially the same as A152271 and A133622. - R. J. Mathar, Mar 20 2009
Also defined by: a(0)=1; thereafter, a(n) = number of copies of a(n-1) in the list [a(0), a(1), ..., a(n-1)]. - N. J. A. Sloane, Feb 12 2016
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(k+1,n-k).
G.f.: Q(0)/x - 1/x, where Q(k)= 1 + (k+1)*x/(1 - x/(x + (k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 23 2013
E.g.f.: cosh(x) + (2 + x)*sinh(x)/2. - Stefano Spezia, Sep 06 2023
MATHEMATICA
CoefficientList[Series[(1+x-x^3)/(1-x^2)^2, {x, 0, 100}], x] (* or *) LinearRecurrence[{0, 2, 0, -1}, {1, 1, 2, 1}, 100] (* Harvey P. Dale, Aug 17 2016 *)
PROG
(PARI) a(n)=1+!(n%2)*n/2 \\ Jaume Oliver Lafont, Mar 21 2009
CROSSREFS
Related to A268696.
Sequence in context: A057979 A152271 A133622 * A318225 A360257 A335497
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Mar 18 2009
STATUS
approved