login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152271 a(n)=1 for even n and (n+1)/2 for odd n. 12
1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 1, 11, 1, 12, 1, 13, 1, 14, 1, 15, 1, 16, 1, 17, 1, 18, 1, 19, 1, 20, 1, 21, 1, 22, 1, 23, 1, 24, 1, 25, 1, 26, 1, 27, 1, 28, 1, 29, 1, 30, 1, 31, 1, 32, 1, 33, 1, 34, 1, 35, 1, 36, 1, 37, 1, 38, 1, 39, 1, 40, 1, 41, 1, 42, 1, 43, 1, 44 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

A000012 and A000027 interleaved. - Omar E. Pol, Mar 12 2012

a(n) = A057979(n+2). - Reinhard Zumkeller, Aug 11 2014

Run lengths in A128218. - Reinhard Zumkeller, Jun 20 2015

a(n+1) is the number of reversible binary strings of length n+1 with Hamming weight 1 or 2 such that the 1's are separated by an even amount of 0's. - Christian Barrientos, Jan 28 2019

LINKS

Table of n, a(n) for n=0..87.

Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).

FORMULA

a(n) = 2*a(n-2) - a(n-4) with a(0)=a(1)=a(2)=1 and a(3)=2.

a(n) = (a(n-2) + a(n-3))/a(n-1).

G.f.: (1 + x - x^2)/(1 - 2*x^2 + x^4).

a(n) = A057979(n+2).

a(n) = (1/4)*(3 + n + (1-n)*(-1)^n), with n >= 0. - Paolo P. Lava, Dec 12 2008

a(n)*a(n+1) = floor((n+2)/2) = A008619(n). - Paul Barry, Feb 27 2009

a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*0^floor((n-2k)/2). - Paul Barry, Feb 27 2009

a(n) = gcd(floor((n+1)/2), (n+1)). - Enrique Pérez Herrero, Mar 13 2012

G.f.: U(0) where U(k) = 1 + x*(k+1)/(1 - x/(x + (k+1)/U(k+1))) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 04 2012

MATHEMATICA

Table[If[EvenQ[n], 1, (n+1)/2], {n, 0, 120}] (* or *) LinearRecurrence[{0, 2, 0, -1}, {1, 1, 1, 2}, 120] (* or *) Riffle[Range[60], 1, {1, -1, 2}] (* Harvey P. Dale, Jan 20 2018 *)

PROG

(PARI) Vec((1+x-x^2)/(1-2*x^2+x^4)+O(x^99)) \\ Charles R Greathouse IV, Jan 12 2012

(PARI) a(n)=gcd(n+1, (n+1)\2) \\ Charles R Greathouse IV, Mar 13, 2012

(Haskell)

import Data.List (transpose)

a152271 = a057979 . (+ 2)

a152271_list = concat $ transpose [repeat 1, [1..]]

-- Reinhard Zumkeller, Aug 11 2014

CROSSREFS

Cf. A000012, A000027, A008619, A057979, A128218.

Sequence in context: A177815 A007879 A057979 * A133622 A158416 A318225

Adjacent sequences:  A152268 A152269 A152270 * A152272 A152273 A152274

KEYWORD

nonn,easy

AUTHOR

Philippe Deléham, Dec 01 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 24 19:48 EDT 2019. Contains 321448 sequences. (Running on oeis4.)