This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057361 a(n) = floor(5*n/8). 15
 0, 0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 21, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28, 29, 30, 30, 31, 31, 32, 33, 33, 34, 35, 35, 36, 36, 37, 38, 38, 39, 40, 40, 41, 41, 42, 43, 43, 44, 45, 45 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS The cyclic pattern (and numerator of the gf) is computed using Euclid's algorithm for GCD. REFERENCES N. Dershowitz and E. M. Reingold, Calendrical Calculations, Cambridge University Press, 1997. R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, NY, 1994. LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 N. Dershowitz and E. M. Reingold, Calendrical Calculations Web Site Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,1,-1). FORMULA G.f. x^2*(1+x^2+x^3+x^5+x^6) / ( (1+x)*(x^2+1)*(x^4+1)*(x-1)^2 ). - Numerator corrected Feb 20 2011 a(0)=0, a(1)=0, a(2)=1, a(3)=1, a(4)=2, a(5)=3, a(6)=3, a(7)=4, a(8)=5, a(n)=a(n-1)+a(n-8)-a(n-9). - Harvey P. Dale, Jul 18 2013 MATHEMATICA Floor[(5*Range[0, 80])/8] (* or *) LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 1, -1}, {0, 0, 1, 1, 2, 3, 3, 4, 5}, 80] (* Harvey P. Dale, Jul 18 2013 *) PROG (PARI) a(n)=5*n\8 \\ Charles R Greathouse IV, Sep 02 2015 (MAGMA) [Floor(5*n/8): n in [0..50]]; // G. C. Greubel, Nov 02 2017 CROSSREFS Floors of other ratios: A004526, A002264, A002265, A004523, A057353, A057354, A057355, A057356, A057357, A057358, A057359, A057360, A057361, A057362, A057363, A057364, A057365, A057366, A057367. Sequence in context: A086335 A123387 A123070 * A136409 A039729 A074065 Adjacent sequences:  A057358 A057359 A057360 * A057362 A057363 A057364 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 22:25 EDT 2019. Contains 328038 sequences. (Running on oeis4.)