login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057358 a(n) = floor(4*n/7). 15
0, 0, 1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 10, 11, 12, 12, 13, 13, 14, 14, 15, 16, 16, 17, 17, 18, 18, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 26, 27, 28, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 34, 35, 36, 36, 37, 37, 38, 38, 39, 40, 40, 41, 41, 42 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

The cyclic pattern (and numerator of the gf) is computed using Euclid's algorithm for GCD.

REFERENCES

N. Dershowitz and E. M. Reingold, Calendrical Calculations, Cambridge University Press, 1997.

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, NY, 1994.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000

N. Dershowitz and E. M. Reingold, Calendrical Calculations Web Site

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,-1)

FORMULA

G.f. x^2*(1+x^2+x^4+x^5) / ( (x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2 ) - Numerator corrected by R. J. Mathar, Feb 20 2011

MATHEMATICA

Table[Floor[4*n/7], {n, 0, 50}] (* G. C. Greubel, Nov 02 2017 *)

PROG

(PARI) a(n)=4*n\7 \\ Charles R Greathouse IV, Sep 02 2015

(MAGMA) [Floor(4*n/7): n in [0..50]]; // G. C. Greubel, Nov 02 2017

CROSSREFS

Floors of other ratios: A004526, A002264, A002265, A004523, A057353, A057354, A057355, A057356, A057357, A057358, A057359, A057360, A057361, A057362, A057363, A057364, A057365, A057366, A057367.

Sequence in context: A047783 A194212 A194208 * A038128 A097337 A263574

Adjacent sequences:  A057355 A057356 A057357 * A057359 A057360 A057361

KEYWORD

nonn,easy

AUTHOR

Mitch Harris

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 19:25 EST 2018. Contains 317149 sequences. (Running on oeis4.)