

A057358


a(n) = floor(4*n/7).


15



0, 0, 1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 10, 11, 12, 12, 13, 13, 14, 14, 15, 16, 16, 17, 17, 18, 18, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 26, 27, 28, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 34, 35, 36, 36, 37, 37, 38, 38, 39, 40, 40, 41, 41, 42
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


COMMENTS

The cyclic pattern (and numerator of the gf) is computed using Euclid's algorithm for GCD.


REFERENCES

N. Dershowitz and E. M. Reingold, Calendrical Calculations, Cambridge University Press, 1997.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, AddisonWesley, NY, 1994.


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000
N. Dershowitz and E. M. Reingold, Calendrical Calculations Web Site
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,1)


FORMULA

G.f. x^2*(1+x^2+x^4+x^5) / ( (x^6+x^5+x^4+x^3+x^2+x+1)*(x1)^2 )  Numerator corrected by R. J. Mathar, Feb 20 2011


MATHEMATICA

Table[Floor[4*n/7], {n, 0, 50}] (* G. C. Greubel, Nov 02 2017 *)


PROG

(PARI) a(n)=4*n\7 \\ Charles R Greathouse IV, Sep 02 2015
(MAGMA) [Floor(4*n/7): n in [0..50]]; // G. C. Greubel, Nov 02 2017


CROSSREFS

Floors of other ratios: A004526, A002264, A002265, A004523, A057353, A057354, A057355, A057356, A057357, A057358, A057359, A057360, A057361, A057362, A057363, A057364, A057365, A057366, A057367.
Sequence in context: A321667 A194212 A194208 * A038128 A097337 A263574
Adjacent sequences: A057355 A057356 A057357 * A057359 A057360 A057361


KEYWORD

nonn,easy


AUTHOR

Mitch Harris


STATUS

approved



