This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057354 a(n) = floor(2*n/5). 18
 0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 20, 20, 20, 21, 21, 22, 22, 22, 23, 23, 24, 24, 24, 25, 25, 26, 26, 26, 27, 27, 28, 28, 28, 29, 29, 30, 30 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS The cyclic pattern (and numerator of the gf) is computed using Euclid's algorithm for GCD. The sequence a(n) can be used in determining confidence intervals for the median of a population. Let Y(i) denote the i-th smallest datum in a random sample of size n from any population of values. When estimating the population median with a symmetric interval [Y(r), Y(n-r+1)], the exact confidence coefficient c for the interval is given by c=sum(C(n, k)(1/2)^n,k=r..n-r). If  r = a(n-4), then the confidence coefficient will be (i) at least 0.90 for all n>=7, (ii) at least 0.95 for all n>=35, and (iii) at least 0.99 for all n>=115. To use the sequence, for example, decide on the minimum level of confidence desired, say 95%. Hence use a sample size of 35 or greater, say n=40. We then find a(n-4)=a(36)=14, and thus the 14th smallest and 14th largest values in the sample will form the bounds for the confidence interval. If the exact confidence coefficient c is needed, calculate c=sum(C(40,k)(1/2)^40, k=14..26), which is 0.9615226917. [Dennis P. Walsh, Nov 28 2011] a(n+2) is also the domination number of the n-antiprism graph. - Eric W. Weisstein, Apr 09 2016 Equals partial sums of 0 together with 0, 0, 1, 0, 1, ... (repeated). - Bruno Berselli, Dec 06 2016 Euler transform of length 5 sequence [1, 1, 0, -1, 1]. - Michael Somos, Dec 06 2016 REFERENCES N. Dershowitz and E. M. Reingold, Calendrical Calculations, Cambridge University Press, 1997. R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, NY, 1994. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 N. Dershowitz and E. M. Reingold, Calendrical Calculations Web Site Dennis Walsh, Median estimation with the point-four-n-minus-two rule Eric Weisstein's World of Mathematics, Antiprism Graph Eric Weisstein's World of Mathematics, Domination Number Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1). FORMULA G.f.: x^3*(1 + x^2) / ((x^4 + x^3 + x^2 + x + 1)*(x - 1)^2). - Numerator corrected by  R. J. Mathar, Feb 20 2011 a(n) = a(n-1) + a(n-5) - a(n-6) for n>5. - Colin Barker, Dec 06 2016 a(n) = -a(2-n) for all n in Z. - Michael Somos, Dec 06 2016 EXAMPLE G.f. = x^3 + x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 3*x^8 + 3*x^9 + 4*x^10 + 4*x^11 + ... MATHEMATICA Table[Floor[2 n/5], {n, 0, 80}] (* Bruno Berselli, Dec 06 2016 *) a[ n_] := Quotient[2 n, 5]; (* Michael Somos, Dec 06 2016 *) PROG (PARI) a(n)=2*n\5 \\ Charles R Greathouse IV, Nov 28 2011 (PARI) concat(vector(3), Vec(x^3*(1 + x^2) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)) + O(x^80))) \\ Colin Barker, Dec 06 2016. (Python) [int(2*n/5) for n in xrange(80)] # Bruno Berselli, Dec 06 2016 (Sage) [floor(2*n/5) for n in xrange(80)] # Bruno Berselli, Dec 06 2016 (MAGMA) [2*n div 5: n in [0..80]]; // Bruno Berselli, Dec 06 2016 CROSSREFS Cf. Floors of other ratios: A004526, A002264, A002265, A004523, A057353, A057354, A057355, A057356, A057357, A057358, A057359, A057360, A057361, A057362, A057363, A057364, A057365, A057366, A057367. Sequence in context: A061375 A029920 A100719 * A172476 A172267 A231151 Adjacent sequences:  A057351 A057352 A057353 * A057355 A057356 A057357 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 15 19:54 EST 2018. Contains 317240 sequences. (Running on oeis4.)