This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057356 a(n) = floor(2*n/7). 15
 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 22, 22, 22 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS The cyclic pattern (and numerator of the gf) is computed using Euclid's algorithm for GCD. REFERENCES R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, NY, 1994. N. Dershowitz and E. M. Reingold, Calendrical Calculations, Cambridge University Press, 1997. LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 N. Dershowitz and E. M. Reingold, Calendrical Calculations Web Site Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,-1). FORMULA G.f.: x^4*(1+x)*(x^2-x+1)/( (x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2 ). - Numerator corrected by R. J. Mathar, Feb 20 2011 MATHEMATICA Table[Floor[2*n/7], {n, 0, 50}] (* G. C. Greubel, Nov 03 2017 *) PROG (PARI) a(n)=2*n\7 \\ Charles R Greathouse IV, Sep 24 2015 (MAGMA) [Floor(2*n/7): n in [0..50]]; // G. C. Greubel, Nov 03 2017 CROSSREFS Floors of other ratios: A004526, A002264, A002265, A004523, A057353, A057354, A057355, A057356, A057357, A057358, A057359, A057360, A057361, A057362, A057363, A057364, A057365, A057366, A057367. Sequence in context: A269734 A066927 A060065 * A172274 A183138 A020913 Adjacent sequences:  A057353 A057354 A057355 * A057357 A057358 A057359 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 20 15:12 EST 2018. Contains 317402 sequences. (Running on oeis4.)