login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055235 Sums of two powers of 3. 12
2, 4, 6, 10, 12, 18, 28, 30, 36, 54, 82, 84, 90, 108, 162, 244, 246, 252, 270, 324, 486, 730, 732, 738, 756, 810, 972, 1458, 2188, 2190, 2196, 2214, 2268, 2430, 2916, 4374, 6562, 6564, 6570, 6588, 6642, 6804, 7290, 8748, 13122, 19684, 19686, 19692, 19710 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

T. D. Noe, Rows n = 0..100 of triangle, flattened

FORMULA

a(n+1) = 3^(n-trinv(n)*(trinv(n)+1)/2)+3^trinv(n), where trinv(n) = floor((sqrt(1+8*n)-1)/2) = A003056(n) and n-trinv(n)*(trinv(n)+1)/2 = A002262(n). [corrected by M. F. Hasler, Oct 08 2011]

Regarded as a triangle, T(n, k) = 3^n + 3^k, because 3^n + 3^n < 3^(n+1) + 3^0 for all n > 0.

MATHEMATICA

mx = 10; Sort[Flatten[Table[3^x + 3^y, {y, 0, mx}, {x, 0, y}]]] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *)

f[n_] := Block[{t = Floor[(Sqrt[1 + 8 (n - 1)] - 1)/2]}, 3^(n - 1 - t*(t + 1)/2) + 3^t]; Array[f, 49] (* Robert G. Wilson v, Oct 08 2011 *)

PROG

(PARI) for( n=0, 5, for(k=0, n, print1(3^n+3^k", ")))

(PARI) A055235(n)={ my( t=(sqrtint(8*n-7)-1)\2); 3^t+3^(n-1-t*(t+1)/2) }  \\ M. F. Hasler, Oct 08 2011

CROSSREFS

Cf. A052216.

Partial sums of A135293.

Sequence in context: A065385 A244052 A324059 * A083887 A339736 A064374

Adjacent sequences:  A055232 A055233 A055234 * A055236 A055237 A055238

KEYWORD

easy,nonn,tabl

AUTHOR

Henry Bottomley, Jun 22 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 6 23:36 EDT 2022. Contains 357270 sequences. (Running on oeis4.)