login
A055235
Sums of two powers of 3.
13
2, 4, 6, 10, 12, 18, 28, 30, 36, 54, 82, 84, 90, 108, 162, 244, 246, 252, 270, 324, 486, 730, 732, 738, 756, 810, 972, 1458, 2188, 2190, 2196, 2214, 2268, 2430, 2916, 4374, 6562, 6564, 6570, 6588, 6642, 6804, 7290, 8748, 13122, 19684, 19686, 19692, 19710
OFFSET
0,1
FORMULA
a(n+1) = 3^(n-trinv(n)*(trinv(n)+1)/2)+3^trinv(n), where trinv(n) = floor((sqrt(1+8*n)-1)/2) = A003056(n) and n-trinv(n)*(trinv(n)+1)/2 = A002262(n). [corrected by M. F. Hasler, Oct 08 2011]
Regarded as a triangle, T(n, k) = 3^n + 3^k, because 3^n + 3^n < 3^(n+1) + 3^0 for all n > 0.
MATHEMATICA
mx = 10; Sort[Flatten[Table[3^x + 3^y, {y, 0, mx}, {x, 0, y}]]] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *)
f[n_] := Block[{t = Floor[(Sqrt[1 + 8 (n - 1)] - 1)/2]}, 3^(n - 1 - t*(t + 1)/2) + 3^t]; Array[f, 49] (* Robert G. Wilson v, Oct 08 2011 *)
PROG
(PARI) for( n=0, 5, for(k=0, n, print1(3^n+3^k", ")))
(PARI) A055235(n)={ my( t=(sqrtint(8*n-7)-1)\2); 3^t+3^(n-1-t*(t+1)/2) } \\ M. F. Hasler, Oct 08 2011
CROSSREFS
Cf. A052216.
Partial sums of A135293.
Sequence in context: A065385 A244052 A324059 * A083887 A339736 A064374
KEYWORD
easy,nonn,tabl
AUTHOR
Henry Bottomley, Jun 22 2000
STATUS
approved