|
|
A135293
|
|
Differences between successive numbers whose sum of digits in base 3 is 2.
|
|
1
|
|
|
2, 2, 2, 4, 2, 6, 10, 2, 6, 18, 28, 2, 6, 18, 54, 82, 2, 6, 18, 54, 162, 244, 2, 6, 18, 54, 162, 486, 730, 2, 6, 18, 54, 162, 486, 1458, 2188, 2, 6, 18, 54, 162, 486, 1458, 4374, 6562, 2, 6, 18, 54, 162, 486, 1458, 4374, 13122
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
First differences of A052216 when the entries in that sequence are interpreted as base 3 numbers.
Can be regarded as a triangle, where T(0,0)=2, T(n+1,0) = T(n,0)+T(n,n), T(n+1,m) = T(n,m) for 0 < m <= n and T(n+1,n+1) = sum of T(n+1,0..n)
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for the first 50 rows
|
|
FORMULA
|
T(n,m) = 2*3^(m-1) = A025192(m) for m>0. T(n,0) = 2*A124302(n). - Franklin T. Adams-Watters, Sep 29 2011
|
|
EXAMPLE
|
triangle begins:
2
2 2
4 2 6
10 2 6 18
28 2 6 18 54
82 2 6 18 54 162
244 2 6 18 54 162 486.
|
|
MATHEMATICA
|
T[0, 0] := 2; T[n_, 0] := 3^(n - 1) + 1; T[n_, m_] := 2*3^(m - 1); Table[T[n, m], {n, 0, 5}, {m, 0, n}] (* G. C. Greubel, Oct 09 2016 *)
Join[{2}, Differences[Select[Range[50000], Total[IntegerDigits[#, 3]]==2&]]] (* Harvey P. Dale, Jul 04 2019 *)
|
|
CROSSREFS
|
Cf. A052216.
Sequence in context: A066243 A278242 A035580 * A216951 A320305 A064025
Adjacent sequences: A135290 A135291 A135292 * A135294 A135295 A135296
|
|
KEYWORD
|
nonn,tabl,base
|
|
AUTHOR
|
Adam Shelly (adam.shelly(AT)gmail.com), Dec 04 2007, Dec 05 2007
|
|
EXTENSIONS
|
Edited by Franklin T. Adams-Watters, Sep 29 2011
|
|
STATUS
|
approved
|
|
|
|