

A055233


Composite numbers equal to the sum of the primes from their smallest prime factor to their largest prime factor.


11




OFFSET

1,1


COMMENTS

Composite n such that n = p_1 + p_2 + ... + p_k where the p_i are consecutive primes, p_1 is the smallest prime factor of n and p_k is the largest.
Concerning a(6): 454539357304421 is the product of two primes, 3536123 * 128541727 and also the sum of these two plus all the primes in between: 3536123 + 3536129 + 3536131 + ... + 128541719 + 128541727. I do not know if there are any terms in A055233 between 2935561623745 and 454539357304421. (I have searched for values of N satisfying N=Pa*Pb=Pa+...+Pb as far as 5.98*10^16, but this is not quite the same as A055233 or A055514.)  Robert Munafo, Nov 20 2002


LINKS

Table of n, a(n) for n=1..6.
Erich Friedman, What's Special About This Number?
G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 39
Miroslav Kureš, Straddled numbers: numbers equal to the sum of powers of consecutive primes from the least prime factor to the largest prime factor, Notes on Number Theory and Discrete Mathematics (2019) Vol. 25, No. 2, 815.
Robert Munafo, Notable Properties of Specific Numbers
Carlos Rivera, Puzzle 98. Curio 39


EXAMPLE

10 = 2*5 = 2 + 3 + 5;
39 = 3*13 = 3 + 5 + 7 + 11 + 13;
371 = 7*53 = 7 + 11 + 13 + ... + 53.


MAPLE

with(numtheory): P:=proc(q) local a, b, c, d, k, n;
for n from 2 to q do if not isprime(n) then a:=ifactors(n)[2]; b:=nops(a);
c:=[]; for k from 1 to b do c:=[op(c), a[k, 1]]; od; c:=sort(c);
d:=0; a:=c[1]; while a<=c[b] do d:=d+a; a:=nextprime(a); od;
if n=d then print(n); fi; fi; od; end: P(10^100); # Paolo P. Lava, May 27 2014


MATHEMATICA

Select[Range[2, 10^3], And[CompositeQ@ #1, #1 == #2] & @@ {#, Total@ Prime[Range @@ PrimePi@ {#[[1, 1]], #[[1, 1]]} &@ FactorInteger[#]]} &] (* Michael De Vlieger, Sep 04 2019 *)


CROSSREFS

Cf. A074036, A055514, A169802.
Sequence in context: A229325 A074225 A055514 * A267626 A189947 A197705
Adjacent sequences: A055230 A055231 A055232 * A055234 A055235 A055236


KEYWORD

nice,nonn


AUTHOR

Carlos Rivera, Jun 21 2000


EXTENSIONS

a(5) found by Jud McCranie, Jul 03 2000
454539357304421 confirmed to be the 6th term by Donovan Johnson, Aug 23 2010
Example: removed last (see A055514).  Manuel Valdivia, Nov 19 2011


STATUS

approved



