The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055232 Expansion of (1+2*x+3*x^2)/((1-x)^3*(1-x^2)). 9
 1, 5, 16, 36, 69, 117, 184, 272, 385, 525, 696, 900, 1141, 1421, 1744, 2112, 2529, 2997, 3520, 4100, 4741, 5445, 6216, 7056, 7969, 8957, 10024, 11172, 12405, 13725, 15136, 16640, 18241, 19941, 21744, 23652, 25669, 27797, 30040, 32400, 34881, 37485, 40216, 43076 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is the number of (w,x,y) having all terms in {0..n} and w <= floor((x+y)/2). - Clark Kimberling, Jun 02 2012 First differences are in A212959. - Wesley Ivan Hurt, Apr 16 2016 REFERENCES R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.28(c), y_3. LINKS Michel Marcus, Table of n, a(n) for n = 0..999 Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1). FORMULA G.f.: (1+2*x+3*x^2)/((1-x)^3*(1-x^2)). a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5). - Clark Kimberling, Jun 02 2012 a(n) = (7+(-1)^n+16*n+14*n^2+4*n^3)/8. - Eric W. Weisstein, Apr 04 2013 a(n) = ((n+1)^3 + ceiling((n+1)/2)^2 + floor((n+1)/2)^2)/2. - Wesley Ivan Hurt, Apr 15 2016 E.g.f.: ((7 + 34*x + 26*x^2 + 4*x^3)*exp(x) + exp(-x))/8. - Ilya Gutkovskiy, Apr 16 2016 MAPLE A055232:=n->(7+(-1)^n+16*n+14*n^2+4*n^3)/8: seq(A055232(n), n=0..100); # Wesley Ivan Hurt, Apr 15 2016 MATHEMATICA Table[(7 + (-1)^n + 16*n + 14*n^2 + 4*n^3)/8, {n, 0, 50}] (* Wesley Ivan Hurt, Apr 15 2016 *) LinearRecurrence[{3, -2, -2, 3, -1}, {1, 5, 16, 36, 69}, 40] (* Harvey P. Dale, Oct 25 2020 *) PROG (Magma) [(7+(-1)^n+16*n+14*n^2+4*n^3)/8 : n in [0..100]]; // Wesley Ivan Hurt, Apr 15 2016 (PARI) lista(nn) = for(n=0, nn, print1((7+(-1)^n+16*n+14*n^2+4*n^3)/8, ", ")); \\ Altug Alkan, Apr 16 2016 CROSSREFS Cf. A212959. Sequence in context: A184635 A328506 A072333 * A211806 A001210 A264552 Adjacent sequences: A055229 A055230 A055231 * A055233 A055234 A055235 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Jul 05 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 19:36 EST 2022. Contains 358703 sequences. (Running on oeis4.)