OFFSET
5,2
COMMENTS
Number of n-permutations of 6 objects: t,u,v,z,x, y with repetition allowed, containing exactly five u's. Example: a(6)=30 because we have uuuuut, uuuutu, uuutuu, uutuuu, utuuuu, tuuuuu, uuuuuv, uuuuvu, uuuvuu, uuvuuu, uvuuuu, vuuuuu, uuuuuz, uuuuzu, uuuzuu, uuzuuu, uzuuuu, zuuuuu, uuuuux, uuuuxu, uuuxuu, uuxuuu, uxuuuu, xuuuuu, uuuuuy, uuuuyu, uuuyuu, uuyuuu, uyuuuu, yuuuuu. - Zerinvary Lajos, Jun 16 2008
REFERENCES
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 5..1000
Eric Weisstein's World of Mathematics, Idempotent Number.
Index entries for linear recurrences with constant coefficients, signature (30,-375,2500,-9375,18750,-15625).
FORMULA
a(n) = C(n, 5)*5^(n-5).
G.f.: x^5/(1-5*x)^6. - Zerinvary Lajos, Aug 06 2008
From Amiram Eldar, Apr 17 2022: (Start)
Sum_{n>=5} 1/a(n) = 6400*log(5/4) - 17125/12.
Sum_{n>=5} (-1)^(n+1)/a(n) = 32400*log(6/5) - 23625/4. (End)
MAPLE
seq(binomial(n, 5)*5^(n-5), n=5..32); # Zerinvary Lajos, Jun 16 2008
MATHEMATICA
CoefficientList[Series[1 / (1 - 5 x)^6, {x, 0, 33}], x] (* Vincenzo Librandi, Aug 12 2017 *)
PROG
(PARI) a(n)=binomial(n, 5)*5^(n-5) \\ Charles R Greathouse IV, Sep 03 2011
(Magma) [Binomial(n, 5)*5^(n-5): n in [5..25]]; // Vincenzo Librandi, Aug 12 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved