login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050989
7-idempotent numbers.
5
1, 56, 1764, 41160, 792330, 13311144, 201885684, 2826399576, 37096494435, 461645264080, 5493578642552, 62926446269232, 697434779483988, 7510836086750640, 78863778910881720, 809668130151718992, 8147285559651672357, 80514351413028291528, 782778416515552834300
OFFSET
7,2
LINKS
Eric Weisstein's World of Mathematics, Idempotent Number.
Index entries for linear recurrences with constant coefficients, signature (56,-1372,19208,-168070,941192,-3294172,6588344,-5764801).
FORMULA
a(n) = C(n, 7)*7^(n-7).
G.f.: x^7/(1-7*x)^8.
From Amiram Eldar, Apr 17 2022: (Start)
Sum_{n>=7} 1/a(n) = 2286144*log(7/6) - 10572289/30.
Sum_{n>=7} (-1)^(n+1)/a(n) = 12845056*log(8/7) - 51456517/30. (End)
MAPLE
seq(binomial(n, 7)*7^(n-7), n=7..33); # Zerinvary Lajos, Aug 01 2008
MATHEMATICA
LinearRecurrence[{56, -1372, 19208, -168070, 941192, -3294172, 6588344, -5764801}, {1, 56, 1764, 41160, 792330, 13311144, 201885684, 2826399576}, 20] (* Harvey P. Dale, May 31 2014 *)
PROG
(PARI) a(n)=binomial(n, 7)*7^(n-7) \\ Charles R Greathouse IV, Sep 03 2011
(Magma) [7^(n-7)* Binomial(n, 7): n in [7..30]]; // Vincenzo Librandi, Oct 16 2011
KEYWORD
nonn,easy
STATUS
approved