login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A040075
5-fold convolution of A000302 (powers of 4); expansion of 1/(1-4*x)^5.
15
1, 20, 240, 2240, 17920, 129024, 860160, 5406720, 32440320, 187432960, 1049624576, 5725224960, 30534533120, 159719096320, 821412495360, 4161823309824, 20809116549120, 102821517066240, 502682972323840, 2434043865989120, 11683410556747776, 55635288365465600
OFFSET
0,2
COMMENTS
Also convolution of A020920 with A000984 (central binomial coefficients).
With a different offset, number of n-permutations (n=5) of 5 objects u, v, w, z, x with repetition allowed, containing exactly four (4)u's. Example: a(1)=20 because we have uuuuv, uuuvu, uuvuu, uvuuu, vuuuu, uuuuw, uuuwu, uuwuu, uwuuu, wuuuu, uuuuz, uuuzu, uuzuu, uzuuu, zuuuu, uuuux, uuuxu, uuxuu, uxuuu and xuuuu. - Zerinvary Lajos, May 19 2008
Also convolution of A000302 with A038846, also convolution of A002457 with A020918, also convolution of A002697 with A038845, also convolution of A002802 with A002802. [Rui Duarte, Oct 08 2011]
LINKS
Eric Weisstein's World of Mathematics, Idempotent Number.
FORMULA
a(n) = binomial(n+4, 4)*4^n.
G.f.: 1/(1-4*x)^5.
a(n) = Sum_{ i_1+i_2+i_3+i_4+i_5+i_6+i_7+i_8+i_9+i_10 = n } f(i_1)*f(i_2) *f(i_3)*f(i_4)*f(i_5)*f(i_6)*f(i_7)*f(i_8)*f(i_9)*f(i_10) with f(k)=A000984(k). - Rui Duarte, Oct 08 2011
E.g.f.: (3 + 48*x + 144*x^2 + 128*x^3 + 32*x^4)*exp(4*x)/3. - G. C. Greubel, Jul 20 2019
From Amiram Eldar, Mar 25 2022: (Start)
Sum_{n>=0} 1/a(n) = 376/3 - 432*log(4/3).
Sum_{n>=0} (-1)^n/a(n) = 2000*log(5/4) - 1336/3. (End)
MAPLE
seq(seq(binomial(i, j)*4^(i-4), j =i-4), i=4..22); # Zerinvary Lajos, Dec 03 2007
seq(binomial(n+4, 4)*4^n, n=0..30); # Zerinvary Lajos, May 19 2008
spec := [S, {B=Set(Z, 0 <= card), S=Prod(Z, Z, Z, Z, B, B, B, B)}, labeled]: seq(combstruct[count](spec, size=n)/24, n=4..34); # Zerinvary Lajos, Apr 05 2009
MATHEMATICA
Table[Binomial[n+4, 4]*4^n, {n, 0, 30}] (* Michael De Vlieger, Aug 21 2015 *)
PROG
(Sage) [lucas_number2(n, 4, 0)*binomial(n, 4)/2^8 for n in range(4, 34)] # Zerinvary Lajos, Mar 11 2009
(Magma) [4^n*Binomial(n+4, 4): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
(PARI) vector(30, n, n--; 4^n*binomial(n+4, 4)) \\ G. C. Greubel, Jul 20 2019
(GAP) List([0..30], n-> 4^n*Binomial(n+4, 4)); # G. C. Greubel, Jul 20 2019
CROSSREFS
KEYWORD
easy,nonn
STATUS
approved