login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A040076 Smallest m >= 0 such that n*2^m+1 is prime, or -1 if no such m exists. 20
0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 3, 0, 6, 1, 1, 0, 1, 2, 2, 1, 2, 0, 1, 0, 8, 3, 1, 2, 1, 0, 2, 5, 1, 0, 1, 0, 2, 1, 2, 0, 583, 1, 2, 1, 1, 0, 1, 1, 4, 1, 2, 0, 5, 0, 4, 7, 1, 2, 1, 0, 2, 1, 1, 0, 3, 0, 2, 1, 1, 4, 3, 0, 2, 3, 1, 0, 1, 2, 4, 1, 2, 0, 1, 1, 8, 7, 2, 582, 1, 0, 2, 1, 1, 0, 3, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,7

COMMENTS

Sierpiński showed that a(n) = -1 infinitely often. John Selfridge showed that a(78557) = -1 and it is conjectured that a(n) >= 0 for all n < 78557.

LINKS

T. D. Noe, Table of n, a(n) for n=1..10000 (with help from the Sierpiński problem website)

Ray Ballinger and Wilfrid Keller, The Sierpiński Problem: Definition and Status

Seventeen or Bust, A Distributed Attack on the Sierpiński problem

EXAMPLE

1*(2^0)+1=2 is prime, so a(1)=0;

3*(2^1)+1=5 is prime, so a(3)=1;

For n=7, 7+1 and 7*2+1 are composite, but 7*2^2+1=29 is prime, so a(7)=2.

MATHEMATICA

Do[m = 0; While[ !PrimeQ[n*2^m + 1], m++ ]; Print[m], {n, 1, 110} ]

CROSSREFS

For the corresponding primes see A050921.

Cf. A103964, A040081.

Cf. A033809, A046067 (odd n), A057192 (prime n).

Sequence in context: A079690 A257510 A225721 * A019269 A204459 A035155

Adjacent sequences:  A040073 A040074 A040075 * A040077 A040078 A040079

KEYWORD

easy,nice,sign

AUTHOR

David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 30 04:27 EDT 2017. Contains 287305 sequences.