login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A204459 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of k-element subsets that can be chosen from {1,2,...,k*n} having element sum k*(k*n+1)/2. 23
1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 2, 1, 1, 0, 1, 0, 3, 0, 1, 0, 1, 8, 8, 4, 1, 1, 0, 1, 0, 33, 0, 5, 0, 1, 0, 1, 58, 141, 86, 25, 6, 1, 1, 0, 1, 0, 676, 0, 177, 0, 7, 0, 1, 0, 1, 526, 3370, 3486, 1394, 318, 50, 8, 1, 1, 0, 1, 0, 17575, 0, 11963, 0, 519, 0, 9, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,13

COMMENTS

A(n,k) is the number of partitions of k*(k*n+1)/2 into k distinct parts <=k*n.

A(n,k) = 0 if k>0 and (n = 0 or k*(k*n+1) mod 2 = 1).

LINKS

Alois P. Heinz, Antidiagonals d=0..60

EXAMPLE

A(0,0) = 1: {}.

A(1,1) = 1: {1}.

A(5,1) = 1: {3}.

A(1,5) = 1: {1,2,3,4,5}.

A(2,2) = 2: {1,4}, {2,3}.

A(3,2) = 3: {1,6}, {2,5}, {3,4}.

A(2,3) = 0: no subset of {1,2,3,4,5,6} has element sum 3*(3*2+1)/2 = 21/2.

A(4,2) = 4: {1,8}, {2,7}, {3,6}, {4,5}.

A(3,3) = 8: {1,5,9}, {1,6,8}, {2,4,9}, {2,5,8}, {2,6,7}, {3,4,8}, {3,5,7}, {4,5,6}.

A(2,4) = 8: {1,2,7,8}, {1,3,6,8}, {1,4,5,8}, {1,4,6,7}, {2,3,5,8}, {2,3,6,7}, {2,4,5,7}, {3,4,5,6}.

Square array A(n,k) begins:

1, 0, 0, 0, 0, 0, 0, 0, ...

1, 1, 1, 1, 1, 1, 1, 1, ...

1, 0, 2, 0, 8, 0, 58, 0, ...

1, 1, 3, 8, 33, 141, 676, 3370, ...

1, 0, 4, 0, 86, 0, 3486, 0, ...

1, 1, 5, 25, 177, 1394, 11963, 108108, ...

1, 0, 6, 0, 318, 0, 32134, 0, ...

1, 1, 7, 50, 519, 5910, 73294, 957332, ...

MAPLE

b:= proc(n, i, t) option remember;

`if`(i<t or n<t*(t+1)/2 or n>t*(2*i-t+1)/2, 0,

`if`(n=0, 1, b(n, i-1, t) +`if`(n<i, 0, b(n-i, i-1, t-1))))

end:

A:= proc(n, k) local s; s:= k*(k*n+1);

`if`(k=0, 1, `if`(n=0 or irem(s, 2)=1, 0, b(s/2, k*n, k)))

end:

seq(seq(A(n, d-n), n=0..d), d=0..15);

MATHEMATICA

b[n_, i_, t_] /; i<t || n<t*((t+1)/2) || n>t*((2*i-t+1)/2) = 0; b[0, _, _] = 1; b[n_, i_, t_] := b[n, i, t] = b[n, i-1, t] + If[n<i, 0, b[n-i, i-1, t-1]]; a[_, 0] = 1; a[0, _] = 0; a[n_, k_] := With[{s = k*(k*n+1)}, If[Mod[s, 2] == 1, 0, b[s/2, k*n, k]]]; Flatten[ Table[ a[n, d-n], {d, 0, 15}, {n, 0, d}]] (* Jean-François Alcover, Jun 15 2012, translated from Maple, after Alois P. Heinz *)

CROSSREFS

Rows n=0-10 give: A000007, A000012, A063074, A109655, A204460, A204461, A204462, A204463, A204464, A204465, A204466.

Columns k=0..10 give: A000012, A000035, A001477, A204467, A204468, A204469, A204470, A204471, A204472, A204473, A204474.

Main diagonal gives: A052456.

Sequence in context: A225721 A040076 A019269 * A035155 A090584 A171400

Adjacent sequences: A204456 A204457 A204458 * A204460 A204461 A204462

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Jan 15 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 23:44 EST 2022. Contains 358485 sequences. (Running on oeis4.)