login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036216 Expansion of 1/(1-3*x)^4; 4-fold convolution of A000244 (powers of 3). 17
1, 12, 90, 540, 2835, 13608, 61236, 262440, 1082565, 4330260, 16888014, 64481508, 241805655, 892820880, 3252418920, 11708708112, 41712272649, 147219785820, 515269250370, 1789882659180, 6175095174171, 21171754882872 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n)=A027465(n+4,4) (O. Gerard's triangle).

With three leading zeros, 3rd binomial transform of (0,0,0,1,0,0,0,0,...) - Paul Barry, Mar 07 2003

Number of n-permutations (n=4) of 4 objects u, v, w, z, with repetition allowed, containing exactly three u's. - Zerinvary Lajos, May 23 2008

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..400

Eric Weisstein's World of Mathematics, Idempotent Number.

Index entries for linear recurrences with constant coefficients, signature (12,-54,108,-81).

FORMULA

a(n) = 3^n*binomial(n+3, 3); g.f. 1/(1-3*x)^4.

With three leading zeros, a(n)=12a(n-1)-54a(n-2)+108a(n-3)-81a(n-4), a(0)=a(1)=a(2)=0, a(3)=1. - Paul Barry, Mar 07 2003

With three leading zeros, C(n, 3)3^(n-3)=the second binomial transform of C(n, 3). - Paul Barry, Jul 24 2003

MAPLE

[seq (binomial(n, 3)*3^(n-3), n=3..24)]; - Zerinvary Lajos, Dec 21 2006

seq(seq(binomial(i, j)*3^(i-3), j =i-3), i=3..24); - Zerinvary Lajos, Dec 03 2007

MATHEMATICA

CoefficientList[Series[1/(1-3x)^4, {x, 0, 30}], x] (* or *) LinearRecurrence[ {12, -54, 108, -81}, {1, 12, 90, 540}, 30] (* Harvey P. Dale, Jul 27 2017 *)

PROG

(Sage) [lucas_number2(n, 3, 0)*binomial(n, 3)/27 for n in xrange(3, 25)] - Zerinvary Lajos, Mar 10 2009

(MAGMA) [3^n* Binomial(n+3, 3): n in [0..30]]; // Vincenzo Librandi, Oct 14 2011

(PARI) a(n) = 3^n*binomial(n+3, 3) \\ Charles R Greathouse IV, Oct 03 2016

CROSSREFS

Cf. A000244, A027465.

Sequence in context: A130072 A135158 A073382 * A022640 A090749 A130592

Adjacent sequences:  A036213 A036214 A036215 * A036217 A036218 A036219

KEYWORD

easy,nonn

AUTHOR

Wolfdieter Lang

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 19:54 EST 2018. Contains 317240 sequences. (Running on oeis4.)